Synthesis 2017; 49(15): 3357-3365
DOI: 10.1055/s-0036-1588458
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Cyclic Diacyl Peroxides: Reactivity and Selectivity Enhancement Brought by the Cyclic Structure

Rong Zhao
b   MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China
c   Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. of China   Email: lshi@hit.edu.cn
,
Denghu Chang
b   MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China
c   Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. of China   Email: lshi@hit.edu.cn
,
Lei Shi  *
a   Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Jingmen 448000, P. R. of China
b   MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China
c   Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P. R. of China   Email: lshi@hit.edu.cn
› Author Affiliations
Financial support was granted by the ‘Hundred Talents Program’ of the Harbin Institute of Technology (HIT), the ‘Fundamental Research Funds for the Central University’ (HIT.BRETIV.201502), the NSFC (21202027), the NCET (NCET-12-0145), the Open Project Program of Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology (no. opp2015ZD01), and the ‘Technology Foundation for Selected Overseas Chinese Scholar’ of the Ministry of Human Resources and Social Security of China (MOHRSS).
Further Information

Publication History

Received: 28 April 2017

Accepted after revision: 22 May 2017

Publication Date:
12 June 2017 (online)


Dedicated to Professor Herbert Mayr on the occasion of his 70th birthday

Abstract

Preliminarily studies on cyclic diacyl peroxides have shown novel and superior reactivities compared with their acyclic diacyl peroxide counterparts in many reaction types. After summarizing the methods available for the preparation of cyclic diacyl peroxides and describing their structural features, this review brings together an overview of their reactivities with respect to oxidations and decarboxylations, and demonstrates the advantages of reactions with cyclic diacyl peroxides, which include metal-free, additive-free, milder conditions, higher yields and better selectivities.

1 Introduction

2 Methods of Preparation of Cyclic Diacyl Peroxides

3 Structures and Stabilities of Cyclic Diacyl Peroxides

4 Oxidation Reactions

4.1 Oxidative Additions to Alkenes

4.2 Oxidation Reactions of Heteroatoms

4.3 Oxidation Reactions of 1,3-Dicarbonyl Compounds

4.4 Hydroxylations of Arenes

5 Decarboxylations

6 Conclusion

 
  • References

  • 1 Brodie BC. Justus Liebigs Ann. Chem. 1858; 108: 79
    • 2a Zhou W.-S. Xu X.-X. Acta Chim. Sinica 2000; 58: 135
    • 2b Li Y. Shan F. Wu J.-M. Wu G.-S. Ding J. Xiao D. Yang W.-Y. Atassi G. Léonce S. Caignard D.-H. Renard P. Bioorg. Med. Chem. Lett. 2001; 11: 5
    • 2c Capon RJ. MacLeod JK. Wills AC. J. Org. Chem. 1987; 52: 339
    • 2d Li J. Casteels T. Frogne T. Ingvorsen C. Honnoé C. Courtney M. Huber KV. M. Schmitner N. Kimmel RA. Romanov RA. Cell 2017; 168: 86
  • 3 Internet Bond-energy Databank (iBonD) Home Page. http://ibond.nankai.edu.cn.
    • 4a Tsuchiya D. Kawagoe Y. Moriyama K. Togo H. Org. Lett. 2013; 15: 4194
    • 4b Mayo FR. Walling C. Chem. Rev. 1940; 27: 351
    • 5a Cheng K. Yao B. Zhao J. Zhang Y. Org. Lett. 2008; 10: 5309
    • 5b Yoo EJ. Ma S. Mei T.-S. Chan KS. L. Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7652
    • 5c Zhang F. Qin Z. Kong L. Zhao Y. Liu Y. Li Y. Org. Lett. 2016; 18: 5150
    • 6a Coppa F. Fontana F. Minisci F. Pianese G. Tortoreto P. Zhao L. Tetrahedron Lett. 1992; 33: 687
    • 6b Bravo A. Bjørsvik H.-R. Fontana F. Liguori L. Mele A. Minisci F. J. Org. Chem. 1997; 62: 7128
    • 6c Minisci F. Vismara E. Fontana F. Morini G. Serravalle M. J. Org. Chem. 1986; 51: 4411
    • 6d Antonietti F. Gambarotti C. Mele A. Minisci F. Paganelli R. Punta C. Recupero F. Eur. J. Org. Chem. 2005; 4434
    • 6e Zhou Y. Wu C. Dong X. Qu J. J. Org. Chem. 2016; 81: 5202
    • 6f Wang L. Sha W. Dai Q. Feng X. Wu W. Peng H. Chen B. Cheng J. Org. Lett. 2014; 16: 2088
    • 6g Fang L. Chen L. Yu J. Wang L. Eur. J. Org. Chem. 2015; 1910
    • 6h Okugawa N. Moriyama K. Togo H. J. Org. Chem. 2017; 82: 170
    • 6i Minisci F. Giordano C. Vismara E. Levi S. Tortelli V. J. Am. Chem. Soc. 1984; 106: 7146
    • 6j Sha W. Yu J.-T. Jiang Y. Yang H. Cheng J. Chem. Commun. 2014; 9179
    • 6k Pan C. Huang B. Hu W. Feng X. Yu J.-T. J. Org. Chem. 2016; 81: 2087
    • 7a Yu W.-Y. Sit WN. Zhou Z. Chan AS. C. Org. Lett. 2009; 11: 3174
    • 7b Li D. Xu N. Zhang Y. Wang L. Chem. Commun. 2014; 14862
    • 7c Qian C. Lin D. Deng Y. Zhang X.-Q. Jiang H. Miao G. Tang X. Zeng W. Org. Biomol. Chem. 2014; 12: 5866
    • 7d Pan C. Zhang H. Han J. Cheng Y. Zhu C. Chem. Commun. 2015; 3786
    • 7e Sun M. Wang Z. Wang J. Guo P. Chen X. Li Y.-M. Org. Biomol. Chem. 2016; 14: 10585
    • 7f Zhu H. Teng F. Pan C. Cheng J. Yu J.-T. Tetrahedron Lett. 2016; 57: 2372
    • 8a Chen H.-H. Wang G.-Z. Han J. Xu M.-Y. Zhao Y.-Q. Xu H.-J. Tetrahedron Lett. 2014; 70: 212
    • 8b Kovacic P. Kurz ME. Tetrahedron Lett. 1966; 7: 2689
    • 8c Kovacic P. Reid CG. Brittain MJ. J. Org. Chem. 1970; 35: 2152
    • 8d Zhou Z. Cheng J. Yu J.-T. Org. Biomol. Chem. 2015; 13: 9751
    • 9a Mohan AG. Turro NJ. J. Chem. Educ. 1974; 51: 528
    • 9b Smellie IA. Aldred JK. D. Bower B. Cochrane A. Macfarlane L. McCarron HB. O’Hara R. Patterson IL. J. Thomson MI. Walker JM. J. Chem. Educ. 2017; 94: 112
    • 9c Jilani O. Donahue TM. Mitchell MO. J. Chem. Educ. 2011; 88: 786
    • 9d Sigvardson KW. Birks JW. Anal. Chem. 1983; 55: 432
    • 9e Kobayashi S. Imai K. Anal. Chem. 1980; 52: 424
    • 9f Kuntzleman TS. Rohrer K. Schultz E. J. Chem. Educ. 2012; 89: 910
    • 9g Kuntzleman TS. Comfort AE. Baldwin BW. J. Chem. Educ. 2009; 86: 64
  • 10 Pechmann HV. Vanino L. Ber. Dtsch. Chem. Ges. 1894; 27: 1510
  • 11 Baeyer A. Villiger V. Ber. Dtsch. Chem. Ges. 1901; 34: 762
  • 12 Kleinfeller H. Rastädter K. Angew. Chem. 1953; 65: 543
  • 13 Russell KE. J. Am. Chem. Soc. 1955; 77: 4814
  • 14 Greene FD. J. Am. Chem. Soc. 1956; 78: 2246
    • 15a Yuan C. Axelrod A. Varela M. Danysh L. Siegel D. Tetrahedron Lett. 2011; 52: 2540
    • 15b Eliasen AM. Thedford RP. Claussen KR. Yuan C. Siegel D. Org. Lett. 2014; 16: 3628
  • 16 Adam W. Rucktaeschel R. J. Am. Chem. Soc. 1971; 93: 557
  • 17 Alberts AH. Wynberg H. Strating J. Synth. Commun. 1973; 3: 297
  • 18 Darmon MJ. Schuster GB. J. Org. Chem. 1982; 47: 4658
  • 19 Griffith JC. Jones KM. Picon S. Rawling MJ. Kariuki BM. Campbell M. Tomkinson NC. O. J. Am. Chem. Soc. 2010; 132: 14409
  • 20 Swem D. Organic Peroxides . John Wiley & Sons; New York: 1971
  • 21 Kikuchi O. Hiyama A. Yoshida H. Suzuki K. Bull. Chem. Soc. Jpn. 1978; 51: 11
  • 22 Reichardt C. Schroeder J. Voehringer P. Schwarzer D. Phys. Chem. Chem. Phys. 2008; 10: 1662
  • 23 Patai S. The Chemistry of Peroxides . John Wiley & Sons; New York: 1983
  • 24 Koch R. Blanch RJ. Wentrup C. J. Org. Chem. 2014; 79: 6978
    • 25a Chang D. Zhu D. Shi L. J. Org. Chem. 2015; 80: 5928
    • 25b Huisgen R. Proc. Chem. Soc. 1961; 357
    • 25c Huisgen R. Knorr R. Naturwissenschaften 1961; 48: 716
    • 25d Huisgen R. Knorr R. Moebius L. Szeimies G. Chem. Ber. 1965; 98: 4014
    • 26a Camelio AM. Studies Toward the Synthesis of Celastrol and the Late-Stage Hydroxylation of Arenes Mediated by 4,5-Dichlorophthaloyl Peroxide. The University of Texas; Austin: 2014
    • 26b Eliasen AM. Total Synthesis and Chemical Modification of Small Molecules: A Study of Axonal Regeneration and Aryl Oxidation. The University of Texas; Austin: 2015
    • 27a Greene FD. J. Am. Chem. Soc. 1956; 78: 2250
    • 27b Greene FD. Rees WW. J. Am. Chem. Soc. 1958; 80: 3432
    • 27c Greene FD. J. Am. Chem. Soc. 1959; 81: 1503
    • 27d Greene FD. Rees WW. J. Am. Chem. Soc. 1960; 82: 890
    • 27e Greene FD. Rees WW. J. Am. Chem. Soc. 1960; 82: 893
  • 28 Zupancic JJ. Horn KA. Schuster GB. J. Am. Chem. Soc. 1980; 102: 5279
  • 29 Bird CW. Tetrahedron 1980; 36: 535
  • 30 Eliasen AM. Christy M. Claussen KR. Besandre R. Thedford RP. Siegel D. Org. Lett. 2015; 17: 4420
    • 31a Jones KM. Tomkinson NC. O. J. Org. Chem. 2012; 77: 921
    • 31b Picon S. Rawling M. Campbell M. Tomkinson NC. O. Org. Lett. 2012; 14: 6250
    • 31c Alamillo-Ferrer C. Davidson SC. Rawling MJ. Theodoulou NH. Campbell M. Humphreys PG. Kennedy AR. Tomkinson NC. O. Org. Lett. 2015; 17: 5132
    • 31d Alamillo-Ferrer C. Karabourniotis-Sotti M. Kennedy AR. Campbell M. Tomkinson NC. O. Org. Lett. 2016; 18: 3102
    • 32a Perret A. Perrot R. Helv. Chim. Acta 1945; 28: 558
    • 32b Qian B. Xiong H. Zhu N. Ye C. Jian W. Bao H. Tetrahedron Lett. 2016; 57: 3400
  • 33 Adam W. Diehl JW. J. Chem. Soc., Chem. Commun. 1972; 797
  • 34 Gan S. Yin J. Yao Y. Liu Y. Chang D. Zhu D. Shi L. Org. Biomol. Chem. 2017; 15: 2647
  • 35 Pryor WA. Bickley HT. J. Org. Chem. 1972; 37: 2885
    • 36a Terent’ev AO. Vil’ VA. Nikishin GI. Adam W. Synlett 2015; 802
    • 36b Terent’ev AO. Vil’ VA. Gorlov ES. Nikishin GI. Pivnitsky KK. Adam W. J. Org. Chem. 2016; 81: 810
    • 36c Shyshkanov SA. Orlov NV. Chem. Eur. J. 2016; 15458
    • 36d Terent’ev AO. Vil’ VA. Gorlov ES. Rusina ON. Korlyukov AA. Nikishin GI. Adam W. ChemistrySelect 2017; 2: 3334
    • 37a Yuan C. Liang Y. Hernandez T. Berriochoa A. Houk KN. Siegel D. Nature 2013; 499: 192
    • 37b Camelio AM. Liang Y. Eliasen AM. Johnson TC. Yuan C. Schuppe AW. Houk KN. Siegel D. J. Org. Chem. 2015; 80: 8084
  • 38 Dragan A. Kubczyk TM. Rowley JH. Sproules S. Tomkinson NC. O. Org. Lett. 2015; 17: 2618
    • 39a Chapman OL. Wojtkowski PW. Adam W. Rodriguez O. Rucktaeschel R. J. Am. Chem. Soc. 1972; 94: 1365
    • 39b Adam W. Rucktaeschel R. J. Org. Chem. 1972; 37: 4128
    • 39c Adam W. Liu J.-C. Rodriguez O. J. Org. Chem. 1973; 38: 2269
    • 39d Adam W. Cadiz C. Mazenod F. Tetrahedron Lett. 1981; 22: 1203
  • 40 Dvořák V. Kolc J. Mich J. Tetrahedron Lett. 1972; 3443
  • 41 Jones CR. Dervan PB. J. Am. Chem. Soc. 1977; 99: 6772
  • 42 Martin MM. King JM. J. Org. Chem. 1973; 38: 1588
    • 43a Brown RF. C. Browne NR. Coulston KJ. Danen LB. Eastwood FW. Irvine MJ. Pullin DE. Tetrahedron Lett. 1986; 27: 1075
    • 43b Jones MJr. DeCamp MR. J. Org. Chem. 1971; 36: 1536
    • 43c Luibrand RT. Hoffmann RW. J. Org. Chem. 1974; 39: 3887
    • 43d Chapman OL. Mattes K. McIntosh CL. Pacansky J. Calder GV. Orr G. J. Am. Chem. Soc. 1973; 95: 6134
    • 43e Torres-Alacan J. J. Org. Chem. 2016; 81: 1151