Synlett 2017; 28(01): 113-116
DOI: 10.1055/s-0036-1588599
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Horner–Wittig/Nazarov vs. Knoevenagel/Nazarov Reactions in the Synthesis of Biologically Active 3-Aryl-Substituted 1-Indanones

Dorota Szczęsna
a   Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland   Email: pbalczew@cbmm.lodz.pl
,
Marek Koprowski
a   Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland   Email: pbalczew@cbmm.lodz.pl
,
Ewa Różycka-Sokołowska
b   Jan Długosz University in Częstochowa, Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
,
Bernard Marciniak
b   Jan Długosz University in Częstochowa, Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
,
Piotr Bałczewski*
a   Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland   Email: pbalczew@cbmm.lodz.pl
b   Jan Długosz University in Częstochowa, Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
› Author Affiliations
Further Information

Publication History

Received: 02 July 2016

Accepted after revision: 29 August 2016

Publication Date:
20 September 2016 (online)


Abstract

3-Aryl-1-indanones and a previously unknown group of 3-aryl-2-phosphoryl-1-indanones have been synthesized from β-ketophosphonates and aromatic aldehydes via corresponding chalcones, in a selective Horner–Wittig or Knoevenagel olefination, followed by a Nazarov cyclization. In preliminary tests, the final compounds and the intermediate chalcones revealed anticancer activity against HeLa and K562 at the μM level.

Supporting Information

 
  • References and Notes

  • 1 Moss GP. Pure Appl. Chem. 2000; 72: 1493
  • 2 Nagle DG, Zhou Y, Park PU. J. Nat. Prod. 2000; 63: 1431
  • 3 Cossy J, Belotti D, Magur A. Synlett 2003; 1515
  • 4 Yu H, Kim IJ, Folk JE. J. Med. Chem. 2004; 47: 2624
  • 5 Vaidya T, Atesin AC, Herrick IR, Frontier AJ, Eisenberg R. Angew. Chem. Int. Ed. 2010; 49: 3363
  • 6 Yu Y.-N, Xu M.-H. J. Org. Chem. 2013; 78: 2736
  • 7 Pellissier H. Tetrahedron 2005; 61: 6479
  • 8 Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
  • 9 Koprowski M, Szymańska D, Bodzioch A, Marciniak B, Różycka-Sokołowska E, Bałczewski P. Tetrahedron 2009; 65: 4017
  • 10 General Procedure for the Synthesis of 3 To a stirred solution of β-ketophosphonate 1 (1.757 mmol) and the corresponding aldehyde 2 (1.933 mmol) in dry toluene, piperidine (2.531 mmol) was added, and the resulting solution was refluxed for 30 h using a Dean–Stark apparatus. The reaction mixture was concentrated under reduced pressure. The crude product was purified by column chromatography (hexane–EtOAc = 2:1, v/v) to afford desired compounds 3a (f): yellow crystals, mp 116–117 °C. Rf = 0.30 (hexane–EtOAc = 2:1 v/v), 0.64 (hexane–EtOAc = 1:2, v/v); yield 53%. 1H NMR (200 MHz, CDCl3): δ = 3.73 (s, 3 H, C(O)OCH3), 3.77 (d, J 3 PH =10.1 Hz, 6 H, P(O)(OCH3)2), 5.93 (s, 2 H, OCH2O), 6.64 (d, J 3 HH =8.1 Hz, 1 H, ArH), 7.27–7.34 (m, 3 H, ArH), 7.40 (d, J 3 PH =9.6 Hz, 1 H, HC=CP(O)), 7.77–7.80 (m, 3 H, ArH), 7.82 (s, 1 H, ArH). 31P NMR (81 MHz, CDCl3): δ = 16.28. 13C NMR (50 MHz, CDCl3): δ = 51.99 (s, C(O)CH3)), 52.04 (d, J 2 PC = 6.0, P(O)OCH3)2), 100.80 (s, OCH2O), 106.82 (s, ArH), 107.05 (s, ArH), 125.88 (s, ArH), 128.25 (s, 2 × o-PhH), 128.47 (d, J 1 PC = 145.7 Hz, =C-P(O)), 128.55 (s, 2 × m-PhH), 136.60 (s), 136.13 (s), 136.56 (s), 143.77 (s, COCH2O), 143.89 (s, COCH2O), 151.6 (s, HC=CP), 164.9 (s, C(O)OCH3), 186.4 (s, C=O). MS (CI, isobutane): m/z = 419.1 (42) [M+ + 1], 361 (100) [M+ + 1 – C(O)OCH3], 344.1 (40) [M+ + 1 – C(O)OCH3; –OH]. HRMS-EI (70 eV): m/z calcd for C20H19PO8: 418.08110; found: 418.08089; Δ: 0.55 (<5).
  • 11 Irgolic KJ In Houben-Weyl . Klamann D. Thieme; Stuttgart: 1990. 4th ed., Vol. E12b 150
  • 12 Pan X.-Q, Zou J.-P, Zhang G.-L, Zhang W. Chem. Commun. 2010; 46: 1721
    • 13a Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 13b Kelly SE. Comprehensive Organic Synthesis . Vol. 1. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 729
    • 13c Magoulas GE, Bariamis SE, Athanassopoulos CM, Haskopoulos A, Dedes PG, Krokidis MG, Karamanos NK, Kletsas D, Papaioannou D, Maroulis G. Eur. J. Med. Chem. 2011; 46: 721
  • 14 Nazarov Cyclization for the Synthesis of 5b with FeCl3 To chalcone 3a(e) (0.100 g, 0.278 mmol) in dry CH2Cl2 (100 mL), FeCl3 (0.090 g, 0.555 mmol) was added, and the solution was refluxed by 5 h. The reaction mixture was washed with water (3 × 30 mL), dried (MgSO4), filtered, and the solvent was removed in vacuo. The crude product was purified by column chromatography (acetone–PE = 1:1, v/v) to afford 5b (0.080 g, 80%). Compound 5b: beige solid; mp 131–133 °C; Rf = 0.35 (acetone–PE = 1:1, v/v). 1H NMR (200 MHz, CDCl3): δ = 3.22 (dd, J 3 HH = 3.4 Hz, J 2 PH = 26.1 Hz, 1 H, HCP(O)), 3.75 (d, J 3 PH = 10.6 Hz, 3 H, P(O)OCH3), 3.80 (d, J 3 PH = 10.3 Hz, 3 H, P(O)OCH3), 4.78 (dd, J 3 HH = 3.4 Hz, J 3 PH = 12.40 Hz, 1 H, HCHCP(O)), 6.06 (s, 2 H, OCH2O), 6.59 (s, 1 H, ArH) 7.04–7.33 (m, 6 H, ArH). 31P NMR (81 MHz, CDCl3): δ = 24.45. 13C NMR (50 MHz, CDCl3): δ = 46.71 (s, CHPh), 53.91 (d, 1 J PC = 146.5 Hz, CHP(O)), 53.43 (d, 2 J PC = 4.9 Hz, P(O)(OCH3)2), 102.43 (s, OCH2O), 105.4 (s, ArH), 105.8 (s, ArH), 127.5 (s), 127.65 (s), 130.9 (s), 142.2 (s), 149.1 (s), 154.2 (s, OCH2OC), 155.0 (s, OCH2OC), 196.5 (s, C=O). MS (CI, 70 eV): m/z = 361.0 (100) [M+ + 1]. HRMS (EI, 70 eV): m/z calcd for C18H17PO6: 360.07679; found: 360.07689; Δ 1.42 (<5). IR (KBr): 3400, 3064, 3027, 2956, 2915, 1696, 1604, 1474, 1452, 1305, 1255, 1041, 867, 833 cm–1.
  • 15 The Nazarov Cyclization for the Synthesis of 6a with AlCl3 To chalcone 4a(a) (0.110 g, 0.377 mmol) in dry toluene (100 mL), AlCl3 (0.101 g, 0.754 mmol) was added, and the solution was stirred for 18 h. The reaction mixture was washed with water (3 × 30 mL), dried (MgSO4), and evaporated The crude product was purified by column chromatography (hexane–EtOAc = 1:3, v/v) to afford 6a (0.099 g, 50%). Compound 6a: beige solid; mp 103–105 °C; Rf = 0.09 (hexane–acetone = 1:9, v/v); yield 90%. 1H NMR (200 MHz, CDCl3): δ = 3.63 (dd, J 3 HH = 5.6 Hz, J 2 HH = 9.1 Hz, 1 H, CH2C(O)), 4.63 (dd, J 2 HH = 9.1 Hz, J 3 HH = 5.1 Hz, 1 H, CH2C(O)), 4.73 (dd, J 3 HH = 5.6 Hz, J 3 HH = 5.0 Hz, 1 H, CHCH2C(O)), 6.99–7.14 (m, 4 H, ArH), 7.55 (d, J 3 HH = 5.1 Hz, 1 H, CH=CH-C(S)), 7.72 (d, J 3 HH = 5.1 Hz, 1 H, CH=CHS). 13C NMR (50 MHz, CDCl3): δ = 37.72 (s, CH2), 48.12 (s, CH2), 123.35 (s, =CBr), 125.91 (s, 2 × o-Ar), 126.32 (s, ArH), 126.74 (s, 2 × m-ArH), 127.13 (s, ArH), 127.95 (s), 130.46 (s), 132.31 (s), 195.84 (s, C=O). MS (CI, isobutane): m/z = 294 (100) [M+ + H (80Br)], 292 (100) [M+ + H (79Br)], 214 (52) [M+ – Br]. HRMS (EI, 70 eV): m/z calcd for C13H9SBrO: 291.95614; found: 291.95647; Δ 1.3 (<5).