Synthesis 2017; 49(01): 76-86
DOI: 10.1055/s-0036-1588606
paper
© Georg Thieme Verlag Stuttgart · New York

Light-Triggered Enantioselective Organocatalytic Mannich-Type Reaction

Hamish B. Hepburn
a   ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
,
Giandomenico Magagnano
a   ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
,
Paolo Melchiorre*
a   ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b   ICREA – Pg. LLuís Companys 23, 08010 Barcelona, Spain   Email: pmelchiorre@iciq.es
› Author Affiliations
Further Information

Publication History

Received: 05 August 2016

Accepted after revision: 01 September 2016

Publication Date:
06 October 2016 (online)


Dedicated to Professor Dieter Enders on the occasion of his 70th birthday

Abstract

Disclosed herein is a photochemical organocatalytic strategy for the direct enantioselective Mannich-type reaction of 2-alkylbenzophenones and cyclic imines. The chemistry exploits the light-triggered enolization of 2-alkylbenzophenones to generate transient hydroxy-o-quinodimethanes. These fleeting intermediates can be stereoselectively intercepted by imines upon activation with a chiral organic catalyst, derived from natural cinchona alkaloids. The developed method uses mild conditions, simple sources of illumination, and easily available substrates and catalysts, affording enantioenriched chiral amines that are difficult to synthesize by other approaches.

Supporting Information

 
  • References

  • 1 Yang NC, Rivas C. J. Am. Chem. Soc. 1961; 83: 2213
  • 2 Sammes PG. Tetrahedron 1976; 32: 405
    • 3a Klán P, Wirz J, Gudmundsdottir A. Photoenolization and its applications . In CRC Handbook of Organic Photochemistry and Photobiology . 3rd ed; Griesbeck A. CRC Press; 2012. Chap. 26: 627-651
    • 3b Block E, Stevenson R. J. Chem. Soc., Perkin Trans. 1 1973; 308
    • 4a Haag R, Wirz J, Wagner PJ. Helv. Chim. Acta 1977; 60: 2595
    • 4b Scaiano JC. Acc. Chem. Res. 1982; 15: 252
    • 4c Wagner PJ, Chen CP. J. Am. Chem Soc. 1976; 98: 239
    • 4d Das PK, Scaiano JC. J. Photochem. 1980; 12: 85

      For selected examples, see:
    • 5a Nicolaou KC, Gray D, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3675
    • 5b Nicolaou KC, Gray D, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3679
    • 5c Nicolaou KC, Gray D. J. Am. Chem. Soc. 2004; 126: 613
    • 5d Charlton JL, Koh K. J. Org. Chem. 1992; 57: 1514
  • 6 Grosch B, Orlebar CN, Herdtweck E, Massa W, Bach T. Angew. Chem. Int. Ed. 2003; 42: 3693
  • 7 Dell’Amico L, Vega-Peñaloza A, Cuadros S, Melchiorre P. Angew. Chem. Int. Ed. 2016; 55: 3313
    • 8a Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013
    • 8b MacMillan DW. C. Nature 2008; 455: 304
  • 9 Merino P, Delso I, Tejero T, Roca-Lopez D, Isasi A, Matute R. Curr. Org. Chem. 2011; 15: 2184

    • For overviews, see:
    • 10a Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
    • 10b Tietze LF, Kettschau G. Top. Curr. Chem. 2008; 189: 1

      For reviews, see:
    • 11a Adair G, Mukherjee S, List B. Aldrichimica Acta 2008; 41: 31
    • 11b Connon SJ. Chem. Commun. 2008; 2499

      For early examples of using cyclic aldimine 2a as a prochiral electrophile, see:
    • 12a Luo Y, Carnell AJ, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 6762
    • 12b Luo Y, Hepburn HB, Chotsaeng N, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 8309

    • For an early example of using the corresponding ketimine, see:
    • 12c Nishimura T, Noishiki A, Chit Tsui G, Hayashi T. J. Am. Chem. Soc. 2012; 134: 5056
  • 13 For an example of imine 2a participating in an enantioselective catalytic hetero-Diels–Alder reaction, see: Liu Y, Kang T.-R, Liu Q.-Z, Chen L.-M, Wang Y.-C, Liu J, Xie Y.-M, Yang J.-L, He L. Org. Lett. 2013; 15: 6090
  • 14 Amberg W, Bennani YL, Chadha RK, Crispino GA, Davies WD, Hartung J, Jeong KS, Ogino Y, Shibata T, Sharpless KB. J. Org. Chem. 1993; 58: 844
  • 15 In addition to the rate acceleration provided by catalyst 6a, the observed level of stereoselectivity can be rationalized on the basis of solubility issues. Indeed, under the reaction conditions (initial concentration of cyclic imine 2a is 0.025 M in cyclohexane) the substrate 2a is only partially soluble. This condition secures a low amount of electrophile in the organic solvent interacting with the (fully soluble) chiral catalyst 6a.
  • 16 In analogy with our precedent study on the stereoselective trapping of the photoenol A with maleimides promoted by the cinchona-derived catalyst 5c (ref. 7), we evaluated the possibility for the chiral amine 6a to attenuate the rate of the racemic background process by reducing the concentration of A in solution. Flash photolysis quenching studies of the transient photoenol A at the millisecond resolution, detailed in the Supplementary Information, established that the amine 6a does not influence the formation of A.
  • 17 CCDC 1497811 (compound 3e) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Other entries were assigned by analogy.
  • 18 Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063

    • Previous reports, which have used (DHQ)2PHAL (6a) to catalyze enantioselective processes, invoked hydrogen bonding interactions (through the phthalazine moiety) and π–π interactions (via the quinoline moiety) with the substrates to rationalize the high stereocontrol, see:
    • 19a Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J. Am. Chem. Soc. 2010; 132: 3298
    • 19b Yousefi R, Whitehead DC, Mueller JM, Staples RJ, Borhan B. Org. Lett. 2011; 13. 608
    • 19c Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
    • 19d Wilking M, Mück-Lichtenfeld M, Daniliuc CG, Hennecke U. J. Am. Chem. Soc. 2013; 135: 8133
    • 19e Zhang W, Liu N, Schienebeck CM, Zhou X, Izhar II, Guzei IA, Tang W. Chem. Sci. 2013; 4: 2652
    • 19f Yin Q, Shou-Guo W, Liang X.-W, Gao D.-W, Zheng J, You S.-L. Chem. Sci. 2015; 6: 4179
    • 19g Zhang T, Qiao Z, Wang Y, Zhong N, Liu L, Wang D, Chen Y.-J. Chem. Commun. 2013; 49: 1636
    • 19h Di Iorio N, Champavert F, Erice A, Righi P, Mazzanti A, Bencivenni G. Tetrahedron 2016; 72: 5191
  • 20 Litvinas ND, Brodsky BH, Du Bois J. Angew. Chem. Int. Ed. 2009; 48: 4513