Synthesis 2017; 49(03): 526-531
DOI: 10.1055/s-0036-1588613
short review
© Georg Thieme Verlag Stuttgart · New York

Li+-Controlled Diastereoselectivity of the Addition of Allenyl Cuprate Reagents to Aldehydes

Pierre Mangeney
a   Laboratoire de Chimie Organique, UMR 7611 Institut de Chimie Moléculaire, FR 2769, UPMC - Univ. Paris 06, CNRS, case 43, 4 Place Jussieu, 75262 Paris Cedex 05, France
,
Hélène Gérard
b   Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7616, Laboratoire de Chimie Théorique, 75005 Paris, France
,
Emmanuel Vrancken*
c   Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, 8, rue de l’école Normale, 34296 Montpellier, France   Email: emmanuel.vrancken@enscm.fr
› Author Affiliations
Further Information

Publication History

Received: 02 September 2016

Accepted: 06 September 2016

Publication Date:
18 October 2016 (online)


In memory of Professor Jean Normant, with deepest respect and gratitude.

Abstract

This personal account summarizes our recent work regarding the addition of allenyl cuprates to aldehydes. An intertwined experimental and theoretical study enables highlighting of the crucial role of Li+ as a structuring agent in the different intermediates and transition states involved, and thus on the diastereochemical outcome of the reaction.

1 Introduction

2 Results and Discussion

3 Conclusion

 
  • References

    • 1a Yamamoto H In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I, Heathcock CH. Pergamon; Oxford: 1991: 81
    • 1b Marshall JA. Chem. Rev. 2000; 100: 3163
    • 1c Marshall JA, Gung B, Grachan ML In Modern Allene Chemistry . Vol. 1. Krause N, Hashmi SK. Wiley-VCH; Weinheim: 2004. Chap. 9, 493

      For some examples, see:
    • 2a Marshall JA. Chem. Rev. 1996; 96: 31
    • 2b Marshall JA, Palovich MR. J. Org. Chem. 1997; 62: 6001
    • 2c Marshall JA, Ellis KC. Org. Lett. 2003; 5: 1729
    • 2d Savall BM, Powell NA, Roush WR. Org. Lett. 2001; 3: 3057
    • 2e Poisson J.-F, Normant JF. J. Org. Chem. 2000; 65: 6553
    • 2f Marshall JA, Mulhearn JJ. Org. Lett. 2005; 7: 1593
    • 2g Botuha C, Chemla F, Ferreira F, Perrez-Luna A, Roy B. New J. Chem. 2007; 31: 1552
    • 2h Anies C, Lallemand J.-Y, Pancrazi A. Tetrahedron Lett. 1996; 37: 5519 ; and references therein
    • 3a Danheiser RL, Carini DJ, Kwasigroch CA. J. Org. Chem. 1986; 51: 3870
    • 3b Buckle MJ. C, Fleming I. Tetrahedron Lett. 1993; 34: 2383
    • 3c Marshall JA, Wang X.-J. J. Org. Chem. 1990; 55: 6246
    • 3d Marshall JA, Wang X.-J. J. Org. Chem. 1992; 57: 1242
    • 3e Marshall JA, Maxson K. J. Org. Chem. 2000; 65: 630
    • 3f Ranslow PB. D, Hegedus LS, de los Rios CJ. J. Org. Chem. 2004; 69: 105
    • 3g Marshall JA, Chobanian H. Org. Synth. 2005; 82: 43
    • 3h Felzmann W, Castagnolo D, Rosenbeiger D, Mulzer J. J. Org. Chem. 2007; 72: 2182
    • 3i Buckle MJ. C, Fleming I, Gil S, Pang KL. C. Org. Biomol. Chem. 2004; 2: 749
    • 3j Bahadoor AB, Flyer A, Micalizio GC. J. Am. Chem. Soc. 2005; 127: 3694
    • 3k For the preparation of syn-tertiary homopropargylic alcohols, see: Yatsumonji Y, Sugita T, Tsubouchi A, Takeda T. Org. Lett. 2010; 12: 1968
  • 4 Epsztein R, Mercier F. Synthesis 1977; 183
  • 5 Bernaud F, Vrancken E, Mangeney P. Synlett 2004; 1080
    • 6a Mercier F, Epsztein R, Holand S. Bull. Soc. Chim. Fr. 1972; 690
    • 6b Corey EJ, Rücker C. Tetrahedron Lett. 1982; 23: 719
    • 6c Bour C, Suffert J. Eur. J. Org. Chem. 2006; 1390
  • 7 Pearson NR, Hahn G, Zweifel G. J. Org. Chem. 1982; 47: 3364
    • 8a Wang KK, Nikam SS, Ho CD. J. Org. Chem. 1983; 48: 5376
    • 8b Ikeda N, Arai I, Yamamoto H. J. Am. Chem. Soc. 1986; 108: 483
  • 9 Groth U, Kesenheimer C, Neidhöfer J. Synlett 2006; 1859
  • 10 Anies C, Lallemand J.-Y, Pancrazi A. Tetrahedron Lett. 1996; 37: 5519 ; and references therein

    • For the use of propargyl-allenyl copper(I) reagents, see:
    • 11a Ganem B. Tetrahedron Lett. 1974; 4467
    • 11b Commerçon A, Normant J, Villieras J. J. Organomet. Chem. 1975; 93: 415
    • 11c Michelot D, Linstrumelle G. Tetrahedron Lett. 1976; 275
    • 11d Ruitenberg K, Kleijn H, Meijer J, Oostveen EA, Vermeer P. J. Organomet. Chem. 1982; 224: 399
    • 11e Ruitenberg K, Vermeer P. J. Organomet. Chem. 1983; 256: 175
    • 11f de Graaf W, Boersma J, van Koten G. J. Organomet. Chem. 1989; 378: 115
    • 11g Bednarski PJ, Nelson SD. J. Med. Chem. 1989; 32: 203
    • 11h Rozema MJ, Knochel P. Tetrahedron Lett. 1991; 32: 1855
    • 11i Lam HW, Pattenden G. Angew. Chem. Int. Ed. 2002; 41: 508
    • 12a Bernaud F, Vrancken E, Mangeney P. Org. Lett. 2003; 5: 2567
    • 12b Alouane N, Bernaud F, Marrot J, Vrancken E, Mangeney P. Org. Lett. 2005; 7: 5797
    • 12c Vrancken E, Alouane N, Gérard H, Mangeney P. J. Org. Chem. 2007; 72: 1770
    • 12d Alouane N, Vrancken E, Mangeney P. Synthesis 2007; 1261
    • 12e Vrancken E, Campagne J.-M, Mangeney P In Comprehensive Organic Synthesis . 2nd ed., Vol. 1; Molander GA, Knochel P. Oxford; Elsevier: 2014: 74
    • 13a Gschwind RM. Chem. Rev. 2008; 108: 3029
    • 13b Bertz SH, Vellekoop AS, Smith RA. J, Snyder JP. Organometallics 1995; 14: 1213
    • 13c Huang H, Liang CH, Penner-Hahn JE. Angew. Chem. Int. Ed. 1998; 37: 1564
    • 13d Gschwind RM, Rajamohanan PR, John M, Boche G. Organometallics 2000; 19: 2868
    • 13e John M, Auel C, Behrens C, Marsch M, Harms K, Bosold F, Gschwind RM, Rajamohanan PR, Boche G. Chem. Eur. J. 2000; 6, 3060 ; and references therein
    • 13f Henze W, Vyater A, Krause N, Gschwind RM. J. Am. Chem. Soc. 2005; 127: 17335
    • 14a Boche G, Bosold F, Marsch M, Harms K. Angew. Chem. Int. Ed. 1998; 37: 1684
    • 14b Hwang C.-S, Power PP. J. Am. Chem. Soc. 1998; 120: 6409
    • 14c Kronenburg CM. P, Jastrzebski JT. B. H, Spek AL, van Koten G. J. Am. Chem. Soc. 1998; 120: 9688
    • 14d Krause N. Angew. Chem. Int. Ed. 1999; 38: 79
  • 15 Vrancken E, Gerard H, Linder D, Ouizem S, Alouane N, Roubineau E, Bentayeb K, Marrot J, Mangeney P. J. Am. Chem. Soc. 2011; 133: 10790