Synlett 2018; 29(20): 2722-2726
DOI: 10.1055/s-0037-1610843
letter
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Nickel-Catalyzed Synthesis of Benzimidazoles: Ammonia as a Cheap and Nontoxic Nitrogen Source

Fang Ke  ◊*
College of Pharmacy, Fujian Medical University, Fuzhou 350004, P. R. of China   Email: kefang@mail.fjmu.edu.cn
,
Peng Zhang ◊
,
Yiwen Xu
,
Xiaoyan Lin
,
Jin Lin
,
Chen Lin
,
Jianhua Xu
› Author Affiliations
This project was sponsored by Research Fund of Fujian Provincial Foundation (2016J01686, 2016J01372, 2016Y9051, 2017J01820, 2017J01820).
Further Information

Publication History

Received: 05 September 2018

Accepted after revision: 23 October 2018

Publication Date:
23 November 2018 (online)


◊ These authors contributed equally to this work.

Abstract

An efficient and convenient Ni-catalyzed C–N bond formation for the synthesis of various benzimidazoles from various 2-haloanilines, aldehydes, and ammonia in a concise manner is reported. This protocol uses commercially available, nonhazardous, clean ammonia as a reaction partner instead of other nitrogen sources. Benzimidazoles, as the sole products, were obtained in high to excellent yields (up to 95%).

Supporting Information

 
  • References and Notes

    • 1a Yadav G, Ganguly S. Eur. J. Med. Chem. 2015; 97: 419
    • 1b Schiffmann R, Neugebauer A, Klein CD. J. Med. Chem. 2006; 49: 511
    • 1c Verma RP. Bioorg. Med. Chem. 2005; 13: 1059
    • 1d Bansal Y, Silakari O. Bioorg. Med. Chem. 2012; 20: 6208
    • 1e Narasimhan B, Sharma D, Kumar P. Med. Chem. Res. 2012; 21: 269
    • 1f Ziarati A, Badiei A, Ziarani GM, Eskandarloo H. Catal. Commun. 2017; 95: 77
    • 2a Hu L, Kully ML, Boykin DW, Abood N. Bioorg. Med. Chem. Lett. 2009; 19: 3374
    • 2b Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 2c Gravatt GL, Baguley BC, Wilson WR, Denny WA. J. Med. Chem. 1994; 37: 4338
    • 2d Majik MS, Tilvi S, Mascarenhas S, Kumar V, Chatterjee A, Banerjee M. RSC Adv. 2014; 4: 28259
    • 2e Sharma P, Reddy TS, Kumar NP, Senwar KR, Bhargava SK, Shankaraiah N. Eur. J. Med. Chem. 2017; 138: 234
    • 3a Song W, Shi L, Gao L, Hu P, Mu H, Xia Z, Huang J, Su J. ACS Appl. Mater. Interfaces 2018; 10: 5714
    • 3b Bouwman E, Driessen WL, Reedijk J. Coord. Chem. Rev. 1990; 104: 143
    • 4a Hu Z, Zhao T, Wang M, Wu J, Yu W, Chang J. J. Org. Chem. 2017; 82: 3152
    • 4b Ghosh P, Subba R. Tetrahedron Lett. 2015; 56: 2691
    • 4c Zhang Z.-H, Yin L, Wang Y.-M. Catal. Commun. 2007; 8: 1126
    • 4d Shelkar R, Sarode S, Nagarkar J. Tetrahedron Lett. 2013; 54: 6986
    • 5a Diao X, Wang Y, Jiang Y, Ma D. J. Org. Chem. 2009; 74: 7974
    • 5b Xiao Q, Wang W.-H, Liu G, Meng F.-K, Chen J.-H, Yang Z, Shi Z.-J. Chem. Eur. J. 2009; 15: 7292
    • 5c Deng X, Mani NS. Eur. J. Org. Chem. 2010; 680
    • 5d Wray BC, Stambuli JP. Org. Lett. 2010; 12: 4576
    • 6a Singh MP, Sasmal S, Lu W, Chatterjee MN. Synthesis 2000; 1380
    • 6b Chari MA, Shobha D, Sasaki T. Tetrahedron Lett. 2011; 52: 5575
    • 6c Nale DB, Bhanage BM. Synlett 2015; 26: 2835
    • 6d Deng X, McAllister H, Mani NS. J. Org. Chem. 2009; 74: 5742
    • 6e Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T. J. Org. Chem. 2009; 7: 8719
    • 6f Lygin AV, de Meijere A. Eur. J. Org. Chem. 2009; 5138
    • 6g Martins GM, Puccinelli T, Gariani RA, Xavier FR, Silveira CC, Mendes SR. Tetrahedron Lett. 2017; 58: 1969
    • 6h De Luca L, Porcheddu A. Eur. J. Org. Chem. 2011; 5791
  • 7 Omar-Amrani R, Thomas A, Brenner E, Schneider R, Fort Y. Org. Lett. 2003; 5: 2311
    • 8a Qu Y, Pan L, Wu Z, Zhou X. Tetrahedron 2013; 69: 1717
    • 8b Saha M, Mukherjee P, Das AR. Tetrahedron Lett. 2017; 58: 1046
    • 8c Kim Y, Kumar MR, Park N, Heo Y, Lee S. J. Org. Chem. 2011; 76: 9577
    • 8d Yu J, Xia Y, Lu M. Appl. Organomet. Chem. 2014; 28: 764
  • 9 Xia N, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 337
    • 10a Ke F, Chen X, Li Z, Xiang H, Zhou X. RSC Adv. 2013; 3: 22837
    • 10b Ke F, Qu Y, Jiang Z, Li Z, Wu D, Zhou X. Org. Lett. 2011; 13: 454
    • 10c Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem. 2013; 11: 2943
    • 11a Chen Z, Li H, Cao G, Xu J, Miao M, Ren H. Synlett. 2017; 28: 504
    • 11b Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
    • 11c Yokota A, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11922
    • 11d Matsubara K, Ueno K, Koga Y, Hara K. J. Org. Chem. 2007; 72: 5069
    • 11e Sutapin C, Chirachanchai S. Synth. Commun. 2018; 48: 650
    • 11f Sharghi H, Asemani O, Khalifeh R. Synth. Commun. 2008; 38: 1128
    • 11g Zhang C, Zhang L, Jiao N. Green Chem. 2012; 14: 3273
    • 11h Yu J, Lu M. Res. Chem. Intermed. 2016; 42: 471
  • 12 Benzimidazoles 2aw; General Procedure A 10 mL glass tube was charged with the appropriate 2-haloaniline (0.5 mmol), 25–28% aq NH3 (2 mL), the appropriate aldehyde (0.6 mmol), NiCl2 (11.88 mg, 0.05 mmol), quinolin-8-ol (7.258 mg, 0.05 mmol), and Cs2CO3 (325.82 mg, 1.0 mmol). The vessel was then sealed with a septum and placed in the cavity of a Discover microwave synthesizer (CEM Corp., Buckingham, UK), and irradiated at 130 W. The temperature was ramped from r.t. to the desired temperature of 100 °C, then held at this temperature for 13 min. The mixture was stirred continuously during the reaction. The mixture was then allowed to cool to r.t. and the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel) to afford the corresponding product. The structures of the products were confirmed by NMR and MS spectroscopic analyses. 2-Phenyl-1H-benzo[d]imidazole (2a) Light-yellow solid; yield: 89.24 mg (92%). 1H NMR (400 MHz, MeCN-d 3): δ = 7.26–7.28 (m, 2 H), 7.55–7.64 (m, 5 H), 8.13 (d, J = 4.0 Hz, 2 H), 10.96 (s, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 151.70, 144.29, 135.48, 130.65, 130.30, 129.42, 126.91, 123.00, 122.14, 119.35, 111.79. ESI-MS: m/z = 195.1 [M + H]+.