Arthritis und Rheuma 2008; 28(05): 255-261
DOI: 10.1055/s-0037-1620123
Degenerative Erkrankungen des Skeletts
Schattauer GmbH

Molekulare Pathologie der Arthrose

Molecular pathology of osteoarthritis
R. Dinser
1   Justus-Liebig-Universität Gießen, Abteilung Rheumatologie und Klinische Immunologie, Lehrstuhl für Innere Medizin mit Schwerpunkt Rheumatologie (Leiter: Prof. Dr. med. Ulf Müller-Ladner)
,
U. Müller-Ladner
1   Justus-Liebig-Universität Gießen, Abteilung Rheumatologie und Klinische Immunologie, Lehrstuhl für Innere Medizin mit Schwerpunkt Rheumatologie (Leiter: Prof. Dr. med. Ulf Müller-Ladner)
,
E. Neumann
1   Justus-Liebig-Universität Gießen, Abteilung Rheumatologie und Klinische Immunologie, Lehrstuhl für Innere Medizin mit Schwerpunkt Rheumatologie (Leiter: Prof. Dr. med. Ulf Müller-Ladner)
› Author Affiliations
Further Information

Publication History

Publication Date:
21 December 2017 (online)

Zusammenfassung

Diese Übersichtsarbeit beleuchtet Elemente der molekularen Pathogenese der Arthrose. Dies geschieht am Beispiel der Zytokine mit Fokus auf Adipozytokine, der Erforschung des Einflusses von Matrixstrukturproteinen mit Fokus auf dominant vererbten Arthroseformen sowie des Einflusses der strukturmodifizierenden Medikamente auf das Verständnis der Erkrankung.

Summary

This review illustrates elements of the molecular pathogenesis of osteoarthritis. As examples serve cytokines with focus on adipocytokines, the elucidation of the role of structural matrix proteins with focus on dominantly inherited osteoarthritis, and the influence of structure modifiying drugs on our conception of osteoarthritis.

 
  • References

  • 1 Aigner T, Zien A, Gehrsitz A. et al. Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 2001; 44: 2777-2789.
  • 2 Brentano F, Schorr O, Ospelt C. et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with pro-inflammatory and matrix-degrading activities. Arthritis Rheum 2007; 56: 2829-2839.
  • 3 Bruyere O, Pavelka K, Rovati LC. et al. Total joint replacement after glucosamine sulphate treatment in knee osteoarthritis: results of a mean 8-year observation of patients from two previous 3-year, randomised, placebo-controlled trials. Osteoarthritis Cart 2008; 16: 254-260.
  • 4 Chan PS, Caron JP, Orth MW. Effects of glucosamine and chondroitin sulphate on bovine cartilage explants under long-term culture conditions. Am J Vet Res 2007; 68: 709-715.
  • 5 Chen TH, Chen L, Hsieh MS. et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta 2006 1762; 711: 718.
  • 6 Cicuttini FM, Spector TD. What is the evidence that osteoarthritis is genetically determined?. Baill Clin Rheumatol. 1997; 11: 657-669.
  • 7 Dinser R, Zaucke F, Kreppel F. et al. Pseudoachondroplasia is caused through both intra- and extracellular pathogenig pathways. J Clin Invest 2002; 110: 505-513.
  • 8 Dinser R, Lange U, Müller-Ladner U. Chondroprotektiva. Arzneimitteltherapie, 2007; 25: 258-262.
  • 9 Dodge GR, Jimenez SA. Glucosamine sulphate modulates the levels of aggre can and matrix me-talloproteinase 3 synthesized by cultured human osteoarthritis articular chondrocytes. Ostearthritis Cart 2003; 11: 424-432.
  • 10 Ehling A, Schaffler A, Herfarth H. et al. The potential of adiponectin in driving arthritis. J Immunol 2006; 176: 4468-4478.
  • 11 Frustaci A, Chimenti C, Ricci R. et al. Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose infusion therapy. N Engl J Med 2001; 345: 25-32.
  • 12 Gosset M, Berenbaum F, Salvat C. et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum 2008; 58: 1399-1409.
  • 13 International Working Group on Constitutional Diseaes of Bone. International nomenclature and classification of the osteochondrodysplasias. Am J Med Genet 1998; 79: 376-382.
  • 14 Haugen F, Drevon CA. Activation of nuclear factor-kappa B by high molecular weight and globular adiponectin. Endocrinology 2007; 148: 5478-5486.
  • 15 Irlenbusch U, Dominick G. Investigations in generalized osteoarthritis. Part 2: special histological features in generalized osteoarthritis (histological investigations in Heberden's nodes using a histological score). Osteoarthr Cart 2006; 14: 428-434.
  • 16 Lago FC, Dieguez C, Gomez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol 2007; 3: 716-724.
  • 17 Livshits G, Kato BS, Zhai G. et al. Genomic linkage scan of hand osteoarthritis in female twin pairs showing replication of quantitative trait loci on chromosomes 2 and 19. Ann Rheum Dis 2007; 66: 623-627.
  • 18 Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29: 403-440.
  • 19 Maddox BK, Keene DR, Sakai LY. et al. The fate of cartilage oligomeric matrix protein is determined by the cell type I n the case of a novel mutation in pseudoachondroplasia. J Biol Chem 1997; 272: 30993-30997.
  • 20 Malemud CJ. Cytokines as therapeutic targets for osteoarthritis. Bio Drugs 2004; 18: 23-35.
  • 21 Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treamtent of osteoarthritis: mechanisms of action. Arthritis Res Ther 2003; 5: 54-67.
  • 22 Neumann EM, Judex F, Kullmann J. et al. Inhibition of cartilage destruction by double gene transfer of IL-1Ra and IL-10 involves the activin pathway. Gene Ther 2002; 9: 1508-1519.
  • 23 Otten C, Wagener R, Paulsson M, Zaucke F. Ma-trilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J Med Genet 2005; 42: 774-779.
  • 24 Plaas A, Osborn B, Yoshihara Y. et al. Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterizsation of AD-MATS5-hyaluronan complexes in articular cartilage. Osteoarthritis Car 2007; 15: 719-734.
  • 25 Roach HI, Aigner T, Soder S. et al. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets 2007; 8: 271-282.
  • 26 Römisch K. A cure for traffic jams: small molecule chaperones in the endoplasmic reticulum. Traffic 2004; 5: 815-820.
  • 27 Schaffler A, Ehling A, Neumann E. et al. Adipocytokines in synovial fluid. J Am Med Assoc 2003; 290: 1709-1710.
  • 28 Schmitz M, Becker A, Schmitz A. et al. Disruption of extracellular matrix structure may cause pseudoachondroplasia in the absence of impaired cartilage oligomeric matrix protein secretion. J Biol Chem 2006; 281: 32587-32595.
  • 29 Senolt L, Pavelka K, Housa D, Haluzik M. Increased adiponectin is negatively linked to the local inflammatory process in patients with rheumatoid arthritis. Cytokine 2006; 35: 247-252.
  • 30 Senolt L, Housa D, Vernerova Z. et al. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Ann Rheum Dis 2007; 66: 458-463.
  • 31 Simkin PA. A biography of the chondrocyte. Ann Rheum Dis 2008; 67: 1064-1068.
  • 32 Spector TD, Cicuttini F, Baker J. et al. Genetic influences on osteoarthritis in women: a twin study. Brit Med J. 1996; 312: 940-944.
  • 33 Stanescu V, Maroteaux P, Stanescu R. The biochemical defect of pseudoachondroplasia. Eur J Ped 1982; 138: 221-225.
  • 34 Tan W, Wang F, Zhang M. et al. High Adiponectin and Adiponectin Receptor 1 Expression in Synovial Fluids and Synovial Tissues of Patients with Rheumatoid Arthritis. Semin Arthritis Rheum 2008 doi:10.1016/j. semararthrit. 2008.01.017.
  • 35 Tang CH, Chiu YC, Tan TW. et al. Adiponectin enhances IL-6 production in human synovial fibroblast via an Adipo R1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol 2007; 179: 5483-5492.
  • 36 Tat SK, Pelletier JP, Verges J. et al. Chondroitin and glucsamine sulphate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts. a basic science study. Arthritis Res Ther 2007; 9: R117
  • 37 Tilg H, Moschen AR. Role of adiponectin and PBEF/visfatin as regulators of inflammation: involvement in obesity-associated diseases. Clin Sci (Lond) 2008; 114: 275-288.
  • 38 Tiku ML, Narla H, Jain M, Yalamanchili P. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation. Arthritis Res Ther 2007; 09: R76
  • 39 Tiraloche G, Girard C, Chouinard L. et al. Effect of oral glucosamine on cartilage degradation in a rabbit model of osteoarthritis. Arthritis Rheum 2005; 52: 1118-1128.
  • 40 Thur J, Rosenberg K, Nitsche DP. et al. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J Biol Chem 2001; 276: 6083-6092.
  • 41 Valdes AM, van Oene M, Hart DJ. et al. Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. Arthritis Rheum 2006; 54: 533-539.
  • 42 Waddell DD, Kolomytkin OV, Dunn S, Marino AA. Hyaluronan suppresses IL-1 beta-induced metalloproteinase activity from synovial tissue. Clin Orthop Relat Res 2007; 465: 241-248.
  • 43 Wang SX, Laverty S, Dumitriu M. et al. The effects of glusoamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Arthritis Rheum 2007; 56: 1537-1548.
  • 44 Zhou PH, Liu SQ, Peng H. The effects of hyaluronic acid on IL-1 beta-induced chondrocyte apoptosis in a rat model of osteoarthritis. J Orthop Res 2008 DOI: 10.1002/jor.20683