Hamostaseologie 1994; 14(01): 16-24
DOI: 10.1055/s-0038-1660339
Originalarbeit/Original Article
Schattauer GmbH

Binding of Heparin to Human Leukocytes

J. Harenberg
1   1st Department of Medicine, Medical University Clinic, Mannheim, Germany (Director: Prof. Dr. med. Dieter L. Heene)
,
R. Malsch
1   1st Department of Medicine, Medical University Clinic, Mannheim, Germany (Director: Prof. Dr. med. Dieter L. Heene)
,
L. Piazolo
1   1st Department of Medicine, Medical University Clinic, Mannheim, Germany (Director: Prof. Dr. med. Dieter L. Heene)
,
D. L. Heene
1   1st Department of Medicine, Medical University Clinic, Mannheim, Germany (Director: Prof. Dr. med. Dieter L. Heene)
› Author Affiliations
Supported by Deutsche Forschungsgemeinschaft, grant Ha 1164/3-1 and 3-2
Further Information

Correspondence to

Prof. Dr. med. Job Harenberg
1st Department of Medicine
Medical University Clinic
Theodor-Kutzer-Ufer
D-68167 Mannheim
Germany

Publication History

Publication Date:
26 June 2018 (online)

 

Summary

Non-anticoagulant actions of heparins and related sulfated polysaccharides in thrombosis, atherosclerosis and inflammation are currently under investigation. To analyze the involvement of leukocytes in this mechanism, a fluorescein labeled low molecular mass heparin-tyramine has been prepared (LMMH-tyr-Fitc) to investigate the binding of heparin and other sulfated polysaccharides to granulocytes, monocytes, and lymphocytes. The fluorescence intensity on leukocytes was quantified using flow cytometry as detection method. LMMH-tyr-Fitc bound dose-dependently to all three leukocyte populations. Phycoerythrin-labeled CD-antibodies identified the specificity of the binding of LMMH-tyr-Fitc to lymphocytes, monocytes, and granulocytes. Unfractionated heparin and LMM-heparin displaced LMMH-tyr-Fitc dose-dependently from granulocytes, monocytes, and lymphocytes and were more effective compared with dextransulfate. Heparin, LMM-heparin and LMMH-tyr-Fitc bound to leukocytes inhibited factors Xa activity in the S2222 chromogenic substrate assay. The data indicate that negatively charged polysaccharides bind to the surface of granulocytes, monocytes and lymphocytes and that binding is in part depending on the number of negatively charged groups of glycosaminoglycans. After binding to the surface of leukocytes heparin exerts still anticoagulant activity indicating its intact biological function. The binding of heparins to leukocytes may significantly contribute to the antithrombotic and to other biological activities.


#

 


#
  • REFERENCES

  • 1 Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Comm 1976; 69: 570-7.
  • 2 Casu B, Oreste P, Torri G, Zopetti G, Choay J, Lormeau JC, Petitou M. The structure of heparin oligosaccharide fragments with high antifactor Xa activity containing the minimal antithrombin Ill-binding sequence. Biochem J 1981; 197: 599-609.
  • 3 Marcum JA, Atha DH, Fritze LMS, Nawroth P, Stern D, Rosenberg RD. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem 1986; 261: 7507-86.
  • 4 Ross R. The pathogenesis of atherosclerosis - an update. N Engl J Med 1986; 314: 488.
  • 5 Harenberg J, de Vries JX. Characterization of heparins by high performance size exclusion liquid chromatography. J Chromatogr 1983; 261: 287-92.
  • 6 Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 1973; 248: 6490-505.
  • 7 Linhardt RJ, Loganathan D. Biomimetic Biopolymers. New York: Plenum; 1990: 135-75.
  • 8 Lane DA, Lindahl U. (eds). Heparin: Chemical and Biological Properties, Clinical Applications. London: Arnold; 1989
  • 9 Kakkar VV, Cohen AT, Edmonson RA, Phillips MJ, Cooper DJ, Das SK, Maher KT, Sanderson RM, Ward VP, Kakkar S. Low molecular weight versus standard heparin for prevention of venous thromboembolism after major abdominal surgery. Lancet 1993; 341: 259-65.
  • 10 Nurmohamed MT, Rosendaal FR, Bliller HR, Dekker E, Hommes DW, Vandenbroucke JP, Briet E. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. Lancet 1992; 340: 152-6.
  • 11 Harenberg J, Heene DL. Pharmacology and special clinical applications of low molecular weight heparins. Am J Hematol 1988; 29: 233-40.
  • 12 Harenberg J, Roebruck P, Stehle G, Habscheid W, Biegholdt M, Heene DL. Heparin study in internal medicine (HESIM): design and preliminary results. Thromb Res 1992; 68: 33-43.
  • 13 Hull RD, Raskob GE, Pineo GF, Green D, Trowbridge AA, Elliott CG, Lerner RG, Hall J, Sparling T, Brettell HR, Norton J, Carter CJ, George R, Merli G, Ward J, Mayo W, Rosenbloom D, Brant R. Subcutaneous low-molecular-weight heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis. N Engl J Med 1992; 326: 975-82.
  • 14 Harenberg J, Huck K, Bratsch H, Stehle G, Dempfle CE, Mall K, Blauth M, Usadel KH, Heene DL. Therapeutic application of subcutaneous low molecular weight heparin. Haemostasis 1990; 20 (Suppl. 01) 205-19.
  • 15 Harenberg J, Malsch R. German Patent. Nr.: P4217916.5-43, 1992
  • 16 Harenberg J, Löhr G, Malsch R, Dempfle CE, Guerrini M, Torri G, Casu B, Heene DL. Magnetic bead protamine linked microtiter assay for detection of heparin using iodinated low molecular weight heparintyramine. Thromb Res. (submitted).
  • 17 Stehle G, Friedrich EA, Sinn H, Wunder A, Harenberg J, Dempfle CE, Maier-Borst W, Heene DL. Hepatic uptake of a modified low molecular weight heparin in rats. J Clin Invest 1992; 90: 2110-6.
  • 18 Malsch R, Harenberg J. Synthesis of a N’alkylamine anticoagulant active low molecular mass (LMM) heparin for radioactive and fluorescent labeling. Anal Biochem 1994; 219 (in press).
  • 19 Malsch R, Harenberg J. Considerations about the correct nomenclature of glycosaminoglycans. Thromb Haemost 1993; 70: 718-9.
  • 20 Smith CW, Marlin SW, Rothlein R, Toman C, Anderson DC. Cooperative interaction of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 1989; 83: 2008-17.
  • 21 Harenberg J, Giese C, Knödler A, Zimmermann R. Comparative study on a new onestage clotting assay for heparin and its low molecular weight derivatives. Haemostasis 1989; 19: 13-20.
  • 22 Lane DA, Adams L. Non-anticoagulant uses of heparin. N Engl J Med 1993; 329: 130-1.
  • 23 Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993; 329: 90-5.
  • 24 Lentini A, Ternai B, Ghosh P. Synthetic inhibitors of human leukocyte elastase. Biochem Int 1985; 10: 221-32.
  • 25 Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993; 329: 90-5.
  • 26 Kapp A, Czech W, Krutmann J, Schöpf E. Eosinophil cationic protein in sera of patients with atopic dermatitis. J Am Acad Dermatol 1991; 24: 555-8.
  • 27 Hjälmarsson K, Marklund SL, Engström T, Edlund T. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sei USA 1987; 84: 6340-4.
  • 28 Needham L, Hellewell PG, Williams TJ, Gordon JL. Endothelial functional responses and increased vascular permeability induced by polycations. Lab Invest 1988; 59: 538-48.
  • 29 Peterson MW, Stone P, Shasby DM. Cationic neutrophil proteins increase transendothelial albumin movement. J Appl Physiol 1987; 62: 1521-30.
  • 30 Brenan M, Parish CR. Modification of lymphocyte migration by sulfated polysaccharides. Eur J Immunol 1987; 16: 423-30.
  • 31 Dziarski R. Synergistic enhancement of T cell responses and interleukin-1 receptor expression by interleukin-1 and heparin or dextran sulfate. Cell Immunol 1992; 145: 100-10.
  • 32 Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983; 221: 719-25.
  • 33 Parish CR, Rylatt DB, Snowden JM. Demonstration of lymphocyte surface lectins that recognize sulfated polysaccharides. J Cell Sci 1984; 67: 145-58.
  • 34 Stoolman LM, Rosen SD. Possible role for cell-surface carbohydrate-binding molecules in lymphocyte recirculation. J Cell Biol 1983; 96: 722-9.
  • 35 Yednock TA, Butcher EC, Stoolman LM, Rosen SD. Receptors involved in lymphocyte homing: relationship between a carbohydrate-binding receptor and the Mel-14 antigen. J Cell Biol 1987; 104: 725-31.
  • 36 Lewinsohn DM, Bargatze RF, Butcher EC. Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J Immunol 1987; 138: 4313-21.
  • 37 Ley K, Cerrito M, Arfors K-E. Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery vanules. Am J Physiol 1991; 260: H1667-H1673.

Correspondence to

Prof. Dr. med. Job Harenberg
1st Department of Medicine
Medical University Clinic
Theodor-Kutzer-Ufer
D-68167 Mannheim
Germany

  • REFERENCES

  • 1 Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Comm 1976; 69: 570-7.
  • 2 Casu B, Oreste P, Torri G, Zopetti G, Choay J, Lormeau JC, Petitou M. The structure of heparin oligosaccharide fragments with high antifactor Xa activity containing the minimal antithrombin Ill-binding sequence. Biochem J 1981; 197: 599-609.
  • 3 Marcum JA, Atha DH, Fritze LMS, Nawroth P, Stern D, Rosenberg RD. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem 1986; 261: 7507-86.
  • 4 Ross R. The pathogenesis of atherosclerosis - an update. N Engl J Med 1986; 314: 488.
  • 5 Harenberg J, de Vries JX. Characterization of heparins by high performance size exclusion liquid chromatography. J Chromatogr 1983; 261: 287-92.
  • 6 Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 1973; 248: 6490-505.
  • 7 Linhardt RJ, Loganathan D. Biomimetic Biopolymers. New York: Plenum; 1990: 135-75.
  • 8 Lane DA, Lindahl U. (eds). Heparin: Chemical and Biological Properties, Clinical Applications. London: Arnold; 1989
  • 9 Kakkar VV, Cohen AT, Edmonson RA, Phillips MJ, Cooper DJ, Das SK, Maher KT, Sanderson RM, Ward VP, Kakkar S. Low molecular weight versus standard heparin for prevention of venous thromboembolism after major abdominal surgery. Lancet 1993; 341: 259-65.
  • 10 Nurmohamed MT, Rosendaal FR, Bliller HR, Dekker E, Hommes DW, Vandenbroucke JP, Briet E. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. Lancet 1992; 340: 152-6.
  • 11 Harenberg J, Heene DL. Pharmacology and special clinical applications of low molecular weight heparins. Am J Hematol 1988; 29: 233-40.
  • 12 Harenberg J, Roebruck P, Stehle G, Habscheid W, Biegholdt M, Heene DL. Heparin study in internal medicine (HESIM): design and preliminary results. Thromb Res 1992; 68: 33-43.
  • 13 Hull RD, Raskob GE, Pineo GF, Green D, Trowbridge AA, Elliott CG, Lerner RG, Hall J, Sparling T, Brettell HR, Norton J, Carter CJ, George R, Merli G, Ward J, Mayo W, Rosenbloom D, Brant R. Subcutaneous low-molecular-weight heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis. N Engl J Med 1992; 326: 975-82.
  • 14 Harenberg J, Huck K, Bratsch H, Stehle G, Dempfle CE, Mall K, Blauth M, Usadel KH, Heene DL. Therapeutic application of subcutaneous low molecular weight heparin. Haemostasis 1990; 20 (Suppl. 01) 205-19.
  • 15 Harenberg J, Malsch R. German Patent. Nr.: P4217916.5-43, 1992
  • 16 Harenberg J, Löhr G, Malsch R, Dempfle CE, Guerrini M, Torri G, Casu B, Heene DL. Magnetic bead protamine linked microtiter assay for detection of heparin using iodinated low molecular weight heparintyramine. Thromb Res. (submitted).
  • 17 Stehle G, Friedrich EA, Sinn H, Wunder A, Harenberg J, Dempfle CE, Maier-Borst W, Heene DL. Hepatic uptake of a modified low molecular weight heparin in rats. J Clin Invest 1992; 90: 2110-6.
  • 18 Malsch R, Harenberg J. Synthesis of a N’alkylamine anticoagulant active low molecular mass (LMM) heparin for radioactive and fluorescent labeling. Anal Biochem 1994; 219 (in press).
  • 19 Malsch R, Harenberg J. Considerations about the correct nomenclature of glycosaminoglycans. Thromb Haemost 1993; 70: 718-9.
  • 20 Smith CW, Marlin SW, Rothlein R, Toman C, Anderson DC. Cooperative interaction of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 1989; 83: 2008-17.
  • 21 Harenberg J, Giese C, Knödler A, Zimmermann R. Comparative study on a new onestage clotting assay for heparin and its low molecular weight derivatives. Haemostasis 1989; 19: 13-20.
  • 22 Lane DA, Adams L. Non-anticoagulant uses of heparin. N Engl J Med 1993; 329: 130-1.
  • 23 Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993; 329: 90-5.
  • 24 Lentini A, Ternai B, Ghosh P. Synthetic inhibitors of human leukocyte elastase. Biochem Int 1985; 10: 221-32.
  • 25 Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993; 329: 90-5.
  • 26 Kapp A, Czech W, Krutmann J, Schöpf E. Eosinophil cationic protein in sera of patients with atopic dermatitis. J Am Acad Dermatol 1991; 24: 555-8.
  • 27 Hjälmarsson K, Marklund SL, Engström T, Edlund T. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sei USA 1987; 84: 6340-4.
  • 28 Needham L, Hellewell PG, Williams TJ, Gordon JL. Endothelial functional responses and increased vascular permeability induced by polycations. Lab Invest 1988; 59: 538-48.
  • 29 Peterson MW, Stone P, Shasby DM. Cationic neutrophil proteins increase transendothelial albumin movement. J Appl Physiol 1987; 62: 1521-30.
  • 30 Brenan M, Parish CR. Modification of lymphocyte migration by sulfated polysaccharides. Eur J Immunol 1987; 16: 423-30.
  • 31 Dziarski R. Synergistic enhancement of T cell responses and interleukin-1 receptor expression by interleukin-1 and heparin or dextran sulfate. Cell Immunol 1992; 145: 100-10.
  • 32 Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983; 221: 719-25.
  • 33 Parish CR, Rylatt DB, Snowden JM. Demonstration of lymphocyte surface lectins that recognize sulfated polysaccharides. J Cell Sci 1984; 67: 145-58.
  • 34 Stoolman LM, Rosen SD. Possible role for cell-surface carbohydrate-binding molecules in lymphocyte recirculation. J Cell Biol 1983; 96: 722-9.
  • 35 Yednock TA, Butcher EC, Stoolman LM, Rosen SD. Receptors involved in lymphocyte homing: relationship between a carbohydrate-binding receptor and the Mel-14 antigen. J Cell Biol 1987; 104: 725-31.
  • 36 Lewinsohn DM, Bargatze RF, Butcher EC. Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J Immunol 1987; 138: 4313-21.
  • 37 Ley K, Cerrito M, Arfors K-E. Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery vanules. Am J Physiol 1991; 260: H1667-H1673.