Semin Neurol 2020; 40(02): 219-235
DOI: 10.1055/s-0040-1705119
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Metabolic Disorders Presenting with Seizures in the Neonatal Period

Elise Brimble
1   Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, California
,
1   Department of Neurology and Neurological Sciences, Stanford Medicine, Stanford, California
2   Division of Medical Genetics, Department of Pediatrics, Stanford Medicine, Stanford, California
› Author Affiliations
Further Information

Publication History

Publication Date:
17 March 2020 (online)

Abstract

Metabolic disorders represent rare but often treatable causes of seizures and epilepsy of neonatal onset. As seizures are relatively common in the neonatal period, systemic clues to a specific diagnosis may be lacking or shrouded by acute illness. An important role of the consulting pediatric neurologist is to identify neonates with a possible metabolic or otherwise genetic diagnosis. In this review, the authors describe presenting signs and symptoms, a diagnostic framework, and disorder-specific treatment options for inborn errors of metabolism that may present in the neonatal period. Specific attention is given to the neurologic aspects of each condition, including the electroclinical phenotype and findings on brain imaging. As expedited diagnosis and prompt initiation of available therapies have been demonstrated to result in improved epilepsy and developmental outcomes, this work acts as a framework to guide evaluation when an inherited metabolic disorder is suspected. In addition to informing treatment, a definitive diagnosis allows for appropriate counseling regarding prognosis, any associated screening or preventive measures, and family planning.

 
  • References

  • 1 Glass HC, Pham TN, Danielsen B, Towner D, Glidden D, Wu YW. Antenatal and intrapartum risk factors for seizures in term newborns: a population-based study, California 1998-2002. J Pediatr 2009; 154 (01) 24-28.e1
  • 2 Pisani F, Facini C, Bianchi E, Giussani G, Piccolo B, Beghi E. Incidence of neonatal seizures, perinatal risk factors for epilepsy and mortality after neonatal seizures in the province of Parma, Italy. Epilepsia 2018; 59 (09) 1764-1773
  • 3 Ronen GM, Penney S, Andrews W. The epidemiology of clinical neonatal seizures in Newfoundland: a population-based study. J Pediatr 1999; 134 (01) 71-75
  • 4 Saliba RM, Annegers JF, Waller DK, Tyson JE, Mizrahi EM. Incidence of neonatal seizures in Harris County, Texas, 1992-1994. Am J Epidemiol 1999; 150 (07) 763-769
  • 5 Glass HC, Shellhaas RA, Wusthoff CJ. , et al; Neonatal Seizure Registry Study Group. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr 2016; 174: 98-103.e1
  • 6 Tadic BV, Kravljanac R, Sretenovic V, Vukomanovic V. Long-term outcome in children with neonatal seizures: a tertiary center experience in cohort of 168 patients. Epilepsy Behav 2018; 84: 107-113
  • 7 Ronen GM, Buckley D, Penney S, Streiner DL. Long-term prognosis in children with neonatal seizures: a population-based study. Neurology 2007; 69 (19) 1816-1822
  • 8 Uria-Avellanal C, Marlow N, Rennie JM. Outcome following neonatal seizures. Semin Fetal Neonatal Med 2013; 18 (04) 224-232
  • 9 Panayiotopoulos CP. Neonatal Seizures and Neonatal Syndromes. In: The Epilepsies: Seizures, Syndromes and Management. Oxfordshire, UK: Bladon Medical Publishing; 2005
  • 10 The ILAE classification of seizures and the epilepsies: modification for seizures in the neonate. Proposal from the ILAE Task Force on Neonatal Seizures. Available at: https://www.ilae.org/files/dmfile/NeonatalSeizureClassification-ProofForWeb.pdf . Accessed May 17, 2019
  • 11 Iqbal M, Prasad M, Mordekar SR. Nonketotic hyperglycinemia case series. J Pediatr Neurosci 2015; 10 (04) 355-358
  • 12 Dinopoulos A, Matsubara Y, Kure S. Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 2005; 86 (1-2): 61-69
  • 13 Lee WT. Disorders of amino acid metabolism associated with epilepsy. Brain Dev 2011; 33 (09) 745-752
  • 14 Stence NV, Fenton LZ, Levek C. , et al. Brain imaging in classic nonketotic hyperglycinemia: quantitative analysis and relation to phenotype. J Inherit Metab Dis 2019; 42 (03) 438-450
  • 15 de Koning TJ, Klomp LW, van Oppen AC. , et al. Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet 2004; 364 (9452): 2221-2222
  • 16 Bjoraker KJ, Swanson MA, Coughlin II CR. , et al. Neurodevelopmental outcome and treatment efficacy of benzoate and dextromethorphan in siblings with attenuated nonketotic hyperglycinemia. J Pediatr 2016; 170: 234-239
  • 17 Hennermann JB, Berger JM, Grieben U, Scharer G, Van Hove JL. Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 2012; 35 (02) 253-261
  • 18 Suzuki Y, Kure S, Oota M, Hino H, Fukuda M. Nonketotic hyperglycinemia: proposal of a diagnostic and treatment strategy. Pediatr Neurol 2010; 43 (03) 221-224
  • 19 Kava MP, Robertson A, Greed L, Balasubramaniam S. Ketogenic diet, a potentially valuable therapeutic option for the management of refractory epilepsy in classical neonatal nonketotic hyperglycinemia: a case report. Eur J Clin Nutr 2019; 73: 961-965
  • 20 de Koning TJ, Duran M, Dorland L. , et al. Beneficial effects of L-serine and glycine in the management of seizures in 3-phosphoglycerate dehydrogenase deficiency. Ann Neurol 1998; 44 (02) 261-265
  • 21 Damseh N, Simonin A, Jalas C. , et al. Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J Med Genet 2015; 52 (08) 541-547
  • 22 Heimer G, Marek-Yagel D, Eyal E. , et al. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum. Clin Genet 2015; 88 (04) 327-335
  • 23 Häberle J, Görg B, Rutsch F. , et al. Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 2005; 353 (18) 1926-1933
  • 24 Häberle J, Shahbeck N, Ibrahim K, Hoffmann GF, Ben-Omran T. Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 2011; 103 (01) 89-91
  • 25 Häberle J, Shahbeck N, Ibrahim K. , et al. Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet J Rare Dis 2012; 7: 48
  • 26 Hu L, Ibrahim K, Stucki M. , et al. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase. J Inherit Metab Dis 2015; 38 (06) 1075-1083
  • 27 Vaidyanathan K, Narayanan MP, Vasudevan DM. Organic acidurias: an updated review. Indian J Clin Biochem 2011; 26 (04) 319-325
  • 28 Reddy N, Calloni SF, Vernon HJ, Boltshauser E, Huisman TAGM, Soares BP. Neuroimaging findings of organic acidemias and aminoacidopathies. Radiographics 2018; 38 (03) 912-931
  • 29 Schillaci LP, DeBrosse SD, McCandless SE. Inborn errors of metabolism with acidosis: organic acidemias and defects of pyruvate and ketone body metabolism. Pediatr Clin North Am 2018; 65 (02) 209-230
  • 30 Zschocke J, Hoffmann GF. Vademecum Metabolicum. 3rd ed. Friedrichsdorf: Milupa Metabolics; 2011
  • 31 Häberle J, Burlina A, Chakrapani A. , et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis 2019; 42 (06) 1192-1230
  • 32 Gunz AC, Choong K, Potter M, Miller E. Magnetic resonance imaging findings and neurodevelopmental outcomes in neonates with urea-cycle defects. Int Med Case Rep J 2013; 6: 41-48
  • 33 Patay Z, Robertson NJ, Cox IJ. Metabolic disorders in the neonate. In: Rutherford MA, Saunders WB. MRI of the Neonatal Brain;2002. Available at: http://www.mrineonatalbrain.com/ch04-17.php
  • 34 Van Leynseele A, Jansen A, Goyens P. , et al. Early treatment of a child with NAGS deficiency using N-carbamyl glutamate results in a normal neurological outcome. Eur J Pediatr 2014; 173 (12) 1635-1638
  • 35 Pearl PL. Amenable treatable severe pediatric epilepsies. Semin Pediatr Neurol 2016; 23 (02) 158-166
  • 36 Guliyeva U, Okur I, Dulac O, Khalilov O, Guliyeva S. Epilepsy in biotinidase deficiency is distinct from early myoclonic encephalopathy. Neuropediatrics 2018; 49 (06) 417-418
  • 37 Hatch J, Coman D, Clayton P. , et al. Normal neurodevelopmental outcomes in PNPO deficiency: a case series and literature review. JIMD Rep 2016; 26: 91-97
  • 38 Liu Z, Zhao X, Sheng H. , et al. Clinical features, BTD gene mutations, and their functional studies of eight symptomatic patients with biotinidase deficiency from Southern China. Am J Med Genet A 2018; 176 (03) 589-596
  • 39 Pope S, Artuch R, Heales S, Rahman S. Cerebral folate deficiency: analytical tests and differential diagnosis. J Inherit Metab Dis 2019; 42 (04) 655-672
  • 40 van Karnebeek CD, Tiebout SA, Niermeijer J. , et al. Pyridoxine-dependent epilepsy: an expanding clinical spectrum. Pediatr Neurol 2016; 59: 6-12
  • 41 Xue J, Qian P, Li H, Wu Y, Liu X, Yang Z. A cohort study of pyridoxine-dependent epilepsy and high prevalence of splice site IVS11+1G>A mutation in Chinese patients. Epilepsy Res 2015; 118: 1-4
  • 42 Wolf B. Biotinidase deficiency: “if you have to have an inherited metabolic disease, this is the one to have”. Genet Med 2012; 14 (06) 565-575
  • 43 Stockler S, Plecko B, Gospe Jr SM. , et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104 (1-2): 48-60
  • 44 Coughlin II CR, van Karnebeek CD, Al-Hertani W. , et al. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: neurodevelopmental outcome. Mol Genet Metab 2015; 116 (1-2): 35-43
  • 45 Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12 (01) 5-20
  • 46 Akman CI, Yu J, Alter A, Engelstad K, De Vivo DC. Diagnosing glucose transporter 1 deficiency at initial presentation facilitates early treatment. J Pediatr 2016; 171: 220-226
  • 47 Castellotti B, Ragona F, Freri E. , et al. Screening of SLC2A1 in a large cohort of patients suspected for Glut1 deficiency syndrome: identification of novel variants and associated phenotypes. J Neurol 2019; 266 (06) 1439-1448
  • 48 Ito Y, Takahashi S, Kagitani-Shimono K. , et al. Nationwide survey of glucose transporter-1 deficiency syndrome (GLUT-1DS) in Japan. Brain Dev 2015; 37 (08) 780-789
  • 49 Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol 2013; 70 (11) 1440-1444
  • 50 Kossoff EH, Zupec-Kania BA, Auvin S. , et al; Charlie Foundation; Matthew's Friends; Practice Committee of the Child Neurology Society. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018; 3 (02) 175-192
  • 51 De Giorgis V, Masnada S, Varesio C. , et al. Overall cognitive profiles in patients with GLUT1 deficiency syndrome. Brain Behav 2019; 9 (03) e01224
  • 52 Alter AS, Engelstad K, Hinton VJ. , et al. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol 2015; 30 (02) 160-169
  • 53 Hainque E, Gras D, Meneret A. , et al. Long-term follow-up in an open-label trial of triheptanoin in GLUT1 deficiency syndrome: a sustained dramatic effect. J Neurol Neurosurg Psychiatry 2019; 90 (11) 1291-1293
  • 54 Bindu PS, Taly AB, Kothari S. , et al. Electro-clinical features and magnetic resonance imaging correlates in Menkes disease. Brain Dev 2013; 35 (05) 398-405
  • 55 Verrotti A, Carelli A, Coppola G. Epilepsy in children with Menkes disease: a systematic review of literature. J Child Neurol 2014; 29 (12) 1757-1764
  • 56 Verrotti A, Cusmai R, Darra F. , et al. Epilepsy in Menkes disease: an electroclinical long-term study of 28 patients. Epilepsy Res 2014; 108 (09) 1597-1603
  • 57 Manara R, D'Agata L, Rocco MC. , et al; Menkes Working Group in the Italian Neuroimaging Network for Rare Diseases. Neuroimaging changes in menkes disease, part 1. AJNR Am J Neuroradiol 2017; 38 (10) 1850-1857
  • 58 Manara R, Rocco MC, D'agata L. , et al; Menkes Working Group in the Italian Neuroimaging Network for Rare Diseases. Neuroimaging changes in menkes disease, part 2. AJNR Am J Neuroradiol 2017; 38 (10) 1858-1865
  • 59 Vairo FPE, Chwal BC, Perini S, Ferreira MAP, de Freitas Lopes AC, Saute JAM. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol Genet Metab 2019; 126 (01) 6-13
  • 60 Kaler SG, Liew CJ, Donsante A, Hicks JD, Sato S, Greenfield JC. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis 2010; 33 (05) 583-589
  • 61 Anderson S. Newborn screening for lysosomal storage disorders. J Pediatr Health Care 2018; 32 (03) 285-294
  • 62 Bowser LE, Young M, Wenger OK. , et al. Recessive GM3 synthase deficiency: natural history, biochemistry, and therapeutic frontier. Mol Genet Metab 2019; 126 (04) 475-488
  • 63 Motta M, Tatti M, Furlan F. , et al. Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin Genet 2016; 90 (03) 220-229
  • 64 Zafeiriou DI, Anastasiou AL, Michelakaki EM, Augoustidou-Savvopoulou PA, Katzos GS, Kontopoulos EE. Early infantile Krabbe disease: deceptively normal magnetic resonance imaging and serial neurophysiological studies. Brain Dev 1997; 19 (07) 488-491
  • 65 Staretz-Chacham O, Lang TC, LaMarca ME, Krasnewich D, Sidransky E. Lysosomal storage disorders in the newborn. Pediatrics 2009; 123 (04) 1191-1207
  • 66 D'Arco F, Hanagandi P, Ganau M, Krishnan P, Taranath A. Neuroimaging findings in lysosomal disorders: 2018 update. Top Magn Reson Imaging 2018; 27 (04) 259-274
  • 67 Reichert R, Campos LG, Vairo F. , et al. Neuroimaging findings in patients with mucopolysaccharidosis: what you really need to know. Radiographics 2016; 36 (05) 1448-1462
  • 68 Beltran-Quintero ML, Bascou NA, Poe MD. , et al. Early progression of Krabbe disease in patients with symptom onset between 0 and 5 months. Orphanet J Rare Dis 2019; 14 (01) 46
  • 69 Altassan R, Péanne R, Jaeken J. , et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow up. J Inherit Metab Dis 2019; 42 (01) 5-28
  • 70 Barba C, Darra F, Cusmai R. , et al; CDG Group. Congenital disorders of glycosylation presenting as epileptic encephalopathy with migrating partial seizures in infancy. Dev Med Child Neurol 2016; 58 (10) 1085-1091
  • 71 Barone R, Aiello C, Race V. , et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 2012; 72 (04) 550-558
  • 72 Barone R, Carrozzi M, Parini R. , et al. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. J Neurol 2015; 262 (01) 154-164
  • 73 Fiumara A, Barone R, Del Campo G, Striano P, Jaeken J. Electroclinical features of early-onset epileptic encephalopathies in congenital disorders of glycosylation (CDGs). JIMD Rep 2016; 27: 93-99
  • 74 Ghosh A, Urquhart J, Daly S. , et al. Phenotypic heterogeneity in a congenital disorder of glycosylation caused by mutations in STT3A. J Child Neurol 2017; 32 (06) 560-565
  • 75 Lieu MT, Ng BG, Rush JS. , et al. Severe, fatal multisystem manifestations in a patient with dolichol kinase-congenital disorder of glycosylation. Mol Genet Metab 2013; 110 (04) 484-489
  • 76 Marini C, Hardies K, Pisano T. , et al; EuroEPINOMICS consortium AR working group. Recessive mutations in SLC35A3 cause early onset epileptic encephalopathy with skeletal defects. Am J Med Genet A 2017; 173 (04) 1119-1123
  • 77 Morava E, Vodopiutz J, Lefeber DJ. , et al. Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics 2012; 130 (04) e1034-e1039
  • 78 Pérez-Dueñas B, García-Cazorla A, Pineda M. , et al. Long-term evolution of eight Spanish patients with CDG type Ia: typical and atypical manifestations. Eur J Paediatr Neurol 2009; 13 (05) 444-451
  • 79 Biffi S, Tamaro G, Bortot B, Zamberlan S, Severini GM, Carrozzi M. Carbohydrate-deficient transferrin (CDT) as a biochemical tool for the screening of congenital disorders of glycosylation (CDGs). Clin Biochem 2007; 40 (18) 1431-1434
  • 80 Bayat A, Knaus A, Juul AW. , et al; DDD Study Group. PIGT-CDG, a disorder of the glycosylphosphatidylinositol anchor: description of 13 novel patients and expansion of the clinical characteristics. Genet Med 2019; 21 (10) 2216-2223
  • 81 Horn D, Wieczorek D, Metcalfe K. , et al. Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome. Eur J Hum Genet 2014; 22 (06) 762-767
  • 82 Johnstone DL, Nguyen TT, Murakami Y. , et al; Care4Rare Canada Consortium. Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Hum Mol Genet 2017; 26 (09) 1706-1715
  • 83 Kato M, Saitsu H, Murakami Y. , et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology 2014; 82 (18) 1587-1596
  • 84 Martin HC, Kim GE, Pagnamenta AT. , et al; WGS500 Consortium. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet 2014; 23 (12) 3200-3211
  • 85 Olson HE, Kelly M, LaCoursiere CM. , et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 2017; 81 (03) 419-429
  • 86 Tanigawa J, Mimatsu H, Mizuno S. , et al. Phenotype-genotype correlations of PIGO deficiency with variable phenotypes from infantile lethality to mild learning difficulties. Hum Mutat 2017; 38 (07) 805-815
  • 87 Foskett GK, Engleman E, Klotz J. , et al. Use of flow cytometry for diagnosis of epilepsy associated with homozygous PIGW variants. Pediatr Neurol 2018; 85: 67-70
  • 88 Knaus A, Pantel JT, Pendziwiat M. , et al. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med 2018; 10 (01) 3
  • 89 Zhao JJ, Halvardson J, Knaus A. , et al. Reduced cell surface levels of GPI-linked markers in a new case with PIGG loss of function. Hum Mutat 2017; 38 (10) 1394-1401
  • 90 Joshi C, Kolbe DL, Mansilla MA, Mason S, Smith RJ, Campbell CA. Ketogenic diet—a novel treatment for early epileptic encephalopathy due to PIGA deficiency. Brain Dev 2016; 38 (09) 848-851
  • 91 Buoni S, Zannolli R, Waterham H, Wanders R, Fois A. D-bifunctional protein deficiency associated with drug resistant infantile spasms. Brain Dev 2007; 29 (01) 51-54
  • 92 Carrozzo R, Bellini C, Lucioli S. , et al. Peroxisomal acyl-CoA-oxidase deficiency: two new cases. Am J Med Genet A 2008; 146A (13) 1676-1681
  • 93 Chang YC, Huang CC, Huang SC, Hung FC. Neonatal adrenoleukodystrophy presenting with seizure at birth: a case report and review of the literature. Pediatr Neurol 2008; 38 (02) 137-139
  • 94 Cho SY, Chang YP, Park JY. , et al. Two novel PEX1 mutations in a patient with Zellweger syndrome: the first Korean case confirmed by biochemical, and molecular evidence. Ann Clin Lab Sci 2011; 41 (02) 182-187
  • 95 Farrell DF. Neonatal adrenoleukodystrophy: a clinical, pathologic, and biochemical study. Pediatr Neurol 2012; 47 (05) 330-336
  • 96 Ferdinandusse S, Denis S, Mooyer PA. , et al. Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann Neurol 2006; 59 (01) 92-104
  • 97 Nascimento J, Mota C, Lacerda L. , et al. D-bifunctional protein deficiency: a cause of neonatal onset seizures and hypotonia. Pediatr Neurol 2015; 52 (05) 539-543
  • 98 Paprocka J, Jamroz E, Adamek D. , et al. Clinical and neuropathological picture of familial encephalopathy with bifunctional protein deficiency. Folia Neuropathol 2007; 45 (04) 213-219
  • 99 Rosewich H, Waterham HR, Wanders RJ. , et al. Pitfall in metabolic screening in a patient with fatal peroxisomal beta-oxidation defect. Neuropediatrics 2006; 37 (02) 95-98
  • 100 Braverman NE, Raymond GV, Rizzo WB. , et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab 2016; 117 (03) 313-321
  • 101 Klouwer FCC, Braverman NE, Verkade HJ. , et al. Oral Cholic Acid in Zellweger spectrum disorders: a word of caution. J Pediatr Gastroenterol Nutr 2018; 66 (02) e57
  • 102 Sue CM, Hirano M, DiMauro S, De Vivo DC. Neonatal presentations of mitochondrial metabolic disorders. Semin Perinatol 1999; 23 (02) 113-124
  • 103 Honzik T, Tesarova M, Magner M. , et al. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 2012; 35 (05) 749-759
  • 104 Saneto RP, Friedman SD, Shaw DW. Neuroimaging of mitochondrial disease. Mitochondrion 2008; 8 (5-6): 396-413
  • 105 Newell C, Khan A, Sinasac D. , et al. Hybrid gel electrophoresis using skin fibroblasts to aid in diagnosing mitochondrial disease. Neurol Genet 2019; 5 (03) e336
  • 106 Saneto RP. Genetics of mitochondrial disease. Adv Genet 2017; 98: 63-116
  • 107 Parikh S, Goldstein A, Koenig MK. , et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 2015; 17 (09) 689-701
  • 108 Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012; (04) CD004426
  • 109 Sofou K, Dahlin M, Hallböök T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis 2017; 40 (02) 237-245
  • 110 Stacpoole PW, Kerr DS, Barnes C. , et al. Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 2006; 117 (05) 1519-1531
  • 111 Jauhari P, Sankhyan N, Vyas S, Singhi P. Thiamine responsive pyruvate dehydrogenase complex deficiency: a potentially treatable cause of Leigh's disease. J Pediatr Neurosci 2017; 12 (03) 265-267
  • 112 Shellhaas RA, Wusthoff CJ, Tsuchida TN. , et al; Neonatal Seizure Registry. Profile of neonatal epilepsies: characteristics of a prospective US cohort. Neurology 2017; 89 (09) 893-899
  • 113 Nunes ML, Yozawitz EG, Zuberi S. , et al; Task Force on Neonatal Seizures, ILAE Commission on Classification & Terminology. Neonatal seizures: is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open 2019; 4 (01) 10-29