Synthesis 2020; 52(21): 3211-3218
DOI: 10.1055/s-0040-1707124
special topic
© Georg Thieme Verlag Stuttgart · New York

Step-Economical C–H Activation Reactions Directed by In Situ Amidation

Baoli Zhao
a   College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China   Email: chemliuyunyun@jxnu.edu.cn
b   Institute of Applied Chemistry and Department of Chemistry, Shaoxing University, Shaoxing, Zhejiang Province 312000, P. R. of China
,
Yunyun Liu
a   College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China   Email: chemliuyunyun@jxnu.edu.cn
› Author Affiliations
This work is supported by the National Natural Science Foundation of China (Grant No. 21562024).
Further Information

Publication History

Received: 31 March 2020

Accepted after revision: 27 April 2020

Publication Date:
18 May 2020 (online)


Published as part of the Special Topic Recent Advances in Amide Bond Formation

Abstract

Owing to the inherent ability of amides to chelate transition-metal catalysts, amide-directed C–H activation reactions constitute a major tactic in directed C–H activation reactions. While the conventional procedures for these reactions usually involve prior preparation and purification of amide substrates before the C–H activation, the step economy is actually undermined by the operation of installing the directing group (DG) and related substrate purification. In this context, directed C–H activation via in situ amidation of the crude material provides a new protocol that can significantly enhance the step economy of amide-directed C–H activation. In this short review, the advances in C–H bond activation reactions mediated or initiated by in situ amidation are summarized and analyzed.

1 Introduction

2 In Situ Amidation in Aryl C–H Bond Activation

3 In Situ Amidation in Alkyl C–H Bond Activation

4 Annulation Reactions via Amidation-Mediated C–H Activation

5 Remote C–H Activation Mediated by Amidation

6 Conclusion

 
  • References

    • 1a Lappert M, Protchenko A, Power P, Seeber A. Metal Amide Chemistry . John Wiley & Sons; Chichester: 2008
    • 1b The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science. Greenberg A, Breneman CM, Liebman JF. John Wiley & Sons; New York: 2000
    • 1c The Chemistry of Amides . Zabicky J. Interscience Publishers; New York: 1970
    • 1d Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 1e Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG. Nat. Chem. Biol. 2020; 6: 581
    • 2a Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 2b Wang H, Dong W, Hou Z, Cheng L, Li X, Huang L. Appl. Organomet. Chem. 2020; 34: e5568
    • 2c Lao M, Wu Z, Su F, Yu Y, Jing Y, Kong J, Wang Z, Wang S, Zhao M. Eur. J. Org. Chem. 2020; 198
    • 2d Muramatsu W, Yamamoto H. J. Am. Chem. Soc. 2019; 141: 18926
    • 2e Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 2f Gooßen LJ, Ohlmann DM, Lange PP. Synthesis 2009; 160
    • 2g Chowdhury AH, Ghosh S, Islam SM. New J. Chem. 2018; 42: 14194
    • 3a Gao Y, Mao Y, Zhang B, Zhang Y, Huo Y. Org. Biomol. Chem. 2018; 16: 3881
    • 3b Wang B, Jiang C, Qian J, Zhang S, Jia X, Yuan Y. Org. Biomol. Chem. 2018; 16: 101
    • 3c Buckingham F, Calderwood S, Checa B, Keller T, Tredwell M, Collier TL, Newington IM, Bhalla R, Glaser M, Gouverneur V. J. Fluorine Chem. 2015; 180: 33
    • 3d Youn SW, Ko TY, Kim YH, Kim YA. Org. Lett. 2018; 20: 7869
    • 3e Wang J, Li F, Pei W, Yang MX, Wu Y, Ma D, Zhang F, Wang J. Tetrahedron Lett. 2018; 59: 1902
    • 4a Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
    • 4b Eldred SE, Stone DA, Gellman SH, Stahl S. J. Am. Chem. Soc. 2003; 125: 3422
    • 4c Zhang M, Imm S, Bähn S, Neubert L, Neumann H, Beller M. Angew. Chem. Int. Ed. 2012; 51: 3905
    • 4d Ramkumar R, Chandrasekaran S. Synthesis 2019; 51: 921
    • 4e Rao SN, Mohan DC, Adimurthy S. Green Chem. 2014; 16: 4122
    • 4f Ghosh T, Jana S, Dash J. Org. Lett. 2019; 21: 6690
    • 4g Fiore VA, Maas G. Tetrahedron 2019; 75: 3586
    • 5a Guo B, de Vries JG, Otten E. Chem. Sci. 2019; 10: 10647
    • 5b Paul B, Maji M, Kundu S. ACS Catal. 2019; 9: 10469
    • 5c Wang K, Jiang P, Yang M, Qin J, Huang X, Ma L, Li R. Green Chem. 2019; 21: 2448
    • 5d Liardo E, González-Fernández R, Ríos-Lombardía N, Morís F, Cadierno V, Crochet P, Rebolledo F, González-Sabín J. ChemCatChem 2018; 10: 4676
    • 5e Zhan W, Ji L, Ge Z.-M, Wang X, Li R.-t. Tetrahedron 2018; 74: 1527
    • 6a Ghorai S, Lee D. Org. Lett. 2019; 21: 7390
    • 6b Xiong Z, Liang D, Luo S. Org. Chem. Front. 2017; 4: 1103
    • 6c Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 6d Wang Y, Liu Y. Acta Chim. Sinica 2019; 77: 418
    • 7a Rilvin-Derrick E, Oram N, Richardson J. Synlett 2020; 31: 369
    • 7b Shen N, Cheung CW, Ma J.-A. Chem. Commun. 2019; 55: 13709
    • 7c Li J, Yu J, Xiong W, Tang H, Hu M, Wu W, Jiang H. Green Chem. 2020; 22: 465
    • 7d Huang Z, Dong Y, Li Y, Makha M, Li Y. ChemCatChem 2019; 11: 5236
    • 7e Sargent BT, Alexanian EJ. Angew. Chem. Int. Ed. 2019; 58: 9533
    • 7f Kollar L, Varga MG, Dornyei A, Takacs A. Tetrahedron 2019; 75: 4632
    • 9a Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
    • 9b Thomas AM, Sujatha A, Anilkumar G. Mini-Rev. Med. Chem. 2015; 12: 3
    • 9c Strieter ER, Blackmond DG, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4120
    • 9d Singh G, Kumar M, Bhalla V. Green Chem. 2018; 20: 5346
    • 10a Xu W.-T, Huang B, Dai J.-J, Xu J, Xu H.-H. Org. Lett. 2016; 13: 3114
    • 10b Yang D, Sun M, Wei W, Li J, Sun P, Zhang Q, Tian L, Wang H. RSC Adv. 2016; 6: 72361
    • 10c Deng L, Huang B, Liu Y. Org. Biomol. Chem. 2018; 16: 1552
    • 10d Sharma AK, Jaiswal A, Singh KN. Org. Biomol. Chem. 2019; 17: 9348

      For recent reviews and research references on amide-directed C–H activation, see:
    • 11a Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 11b Sambiagio C, Schönbauer D, Bliek R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 11c Rao W.-H, Shi B.-F. Org. Chem. Front. 2016; 3: 1028
    • 11d Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 11e Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 11f Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 11g Han X.-L, Lin P.-P, Li Q. Chin. Chem. Lett. 2019; 30: 1495
    • 11h Tan PW, Seayad J. Tetrahedron Lett. 2019; 60: 151338
    • 11i Wu M, Huang X, Zhang H, Li P. Chin. J. Org. Chem. 2019; 39: 3114
    • 11j Sun M, Chen W, Xia X, Shen G, Ma Y, Yang J, Ding H, Wang Z. Org. Lett. 2020; 22: 3229
    • 11k Bao S.-T, Bheeter CB, Reek JN. H. Angew. Chem. Int. Ed. 2019; 58: 13039
    • 11l Li Q.-Z, Wang X.-H, Hou S.-H, Ma Y.-Y, Zhao D.-G, Zhang S.-Y, Bai H.-Y, Ding T.-M. Synthesis 2019; 51: 2697
    • 11m Sun S.-Z, Xu H, Dai H.-X. Chin. Chem. Lett. 2019; 30: 969
    • 12a Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 12b Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 12c Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 12d Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
    • 12e Zheng L, Hua R. Chem. Rec. 2018; 18: 556
    • 13a Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 13b Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li S, Engle KM, Yu J.-Q. Nature 2015; 519: 334
    • 13c Liu Y, Ge H. Nat. Chem. 2017; 9: 26
    • 13d Yao Q.-J, Zhang S, Zhan B.-B, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 6617
    • 14a Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 14b Yu S, Lv N, Liu Z, Zhang Y. Adv. Synth. Catal. 2020; 362: 118
    • 14c Mei R, Sauermann N, Oliveira JC. A, Ackermann L. J. Am. Chem. Soc. 2018; 140: 7913
    • 14d Xie F, Yu S, Qi Z, Li X. Angew. Chem. Int. Ed. 2016; 55: 15351
    • 14e Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
    • 15a Biafora A, Gooßen LJ. Synlett 2017; 28: 1885
    • 15b Huang L, Biafora A, Zhang D, Bragoni V, Gooßen LJ. Angew. Chem. Int. Ed. 2016; 55: 6933
    • 15c Gao Y, Nie J, Li Y, Li X, Chen Q, Huo Y, Hu X.-Q. Org. Lett. 2020; 22: 2600
    • 16a Bai Z, Bai Z, Song F, Wang H, Chen G, He G. ACS Catal. 2020; 10: 933
    • 16b Sen C, Sahoo T, Singh H, Suresh E, Ghosh SC. J. Org. Chem. 2019; 84: 9869
    • 16c Ban Z, Cui X, Hu F, Lu G, Luo N, Huang G. New J. Chem. 2019; 43: 12963
    • 16d Takamatsu K, Hirano K, Miura M. Org. Lett. 2015; 17: 4066
    • 16e Begum Z, Bhavani G, Sidhar B, Reddy BV. S. Synthesis 2018; 50: 4089
    • 16f Gandeepan P, Rajamalli P, Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 4308
    • 16g Thrimurtulu N, Dey A, Maiti D, Volla CM. R. Angew. Chem. Int. Ed. 2016; 55: 12361
    • 16h Gui Q, Chen X, Hu L, Wang D, Liu D, Tan Z. Adv. Synth. Catal. 2016; 358: 509
  • 17 Liu Y, Zhang Y, Huang M, Wan J.-P. RSC Adv. 2015; 5: 46192
  • 18 Liu Y.-Y, Huang M.-Y, Wei L. Asian J. Org. Chem. 2017; 6: 41
  • 19 Liu Y, Zhang Y, Wan J.-P. J. Org. Chem. 2017; 82: 8950
  • 20 Reddy MD, Blanton AN, Watkins EB. J. Org. Chem. 2017; 82: 5080
    • 21a Panda N, Sahoo K. Adv. Synth. Catal. 2019; 361: 617
    • 21b Liu Z.-T, Wang Y.-H, Zhu F.-L, Hu X.-P. Org. Lett. 2016; 18: 1190
    • 21c Liu Y, Chen X. Tetrahedron 2018; 74: 3691
    • 21d Xaio M, Jiang Y, Yan C. Mol. Diversity 2019; 23: 123
    • 21e Khalafi-Nezhad A, Panahi F. ACS Catal. 2014; 4: 1686
    • 22a He G, Zhang S.-Y, Nack WA, Li Q, Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
    • 22b Hu Q, Liu X, Wang G, Wang F, Li Q, Zhang W. Chem. Eur. J. 2017; 23: 17695
    • 22c Deb A, Hazra A, Peng Q, Paton RS, Maiti D. J. Am. Chem. Soc. 2017; 139: 763
    • 22d Rao W.-H, Zhang B.-B, Chen K, Ling P.-X, Zhang Z.-Z, Shi B.-F. Org. Lett. 2015; 17: 3552
  • 23 Liu Y, Huang B, Cao X, Wan J.-P. ChemCatChem 2016; 8: 1470
  • 24 Tu Z, Du Y, Liu Y. Adv. Synth. Catal. 2019; 361: 4989
  • 25 Liu Y, Zhang Y, Cao X, Wan J.-P. Beilstein J. Org. Chem. 2016; 12: 1122
  • 26 Mohan S, Gopalakrishnan B, Babu SA. Tetrahedron 2016; 72: 5853
  • 27 Dalal A, Singh P, Babu SA. Tetrahedron 2019; 75: 1246
  • 28 Wan J.-P, Li Y, Liu Y. Org. Chem. Front. 2016; 3: 768
  • 29 Bai P, Li Y.-Q, Huang Z.-Z. Org. Lett. 2017; 19: 1374
  • 30 Wang L, Liu X, Liu J.-b, Shen J, Chen Q, He M.-y. Chem. Asian J. 2018; 13: 765
  • 31 Kumar GS, Khot NP, Kapur M. Adv. Synth. Catal. 2019; 361: 73
  • 32 Feng M, Tang B, Xu H.-X, Jiang X. Org. Lett. 2016; 18: 4352
  • 33 Du Y, Wei L, Liu Y. Heteroat. Chem. 2017; 28: e21401
  • 34 Yu Q, Yang Y, Wan J.-P, Liu Y. J. Org. Chem. 2018; 83: 11385
  • 35 Du Y, Liu Y, Wan J.-P. J. Org. Chem. 2018; 83: 3403
  • 36 Xiong J, Liu Y. ChemistrySelect 2019; 4: 693
  • 37 Li D, Jia Z, Jiang Y, Jia J, Zhao X, Li Z, Xu Z. Chemistry ­Select 2019; 4: 13964