Synthesis 2021; 53(04): 587-610
DOI: 10.1055/s-0040-1707328
review

Recent Advances in Organic Synthesis Based on N,N-Dimethyl Enaminones

Jiuzhong Huang
b   School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. of China
,
Fuchao Yu
a   Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: yufuchao05@126.com   Email: yufc@kust.edu.cn
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (21961018), the Natural Science Foundation of Yunnan Province (201901T070302), the Analytical & Testing Foundation of Kunming University of Science and Technology (2017T20130137), and the Fundamental Research Funds for Gannan Medical University (QD202001)


Abstract

Enaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.

1 Introduction

2 Direct C(sp2)–H α-Functionalization

2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones

2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones

2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones

3 Functionalization Reactions via C=C Double Bond Cleavage

3.1 Synthesis of Functionalized Methyl Ketones

3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones

3.3 Synthesis of N-Sulfonyl Amidines

4 Construction of All-Carbon Aromatic Scaffolds

4.1 Synthesis of Benzaldehydes

4.2 Synthesis of the Naphthalenes

5 Construction of Heterocyclic Scaffolds

5.1 Synthesis of Five-Membered Heterocycles

5.2 Synthesis of Six-Membered Heterocycles

5.3 Synthesis of Quinolines

5.4 Synthesis of Functionalized Chromones

5.5 Synthesis of Other Fused Polycyclic Heterocycles

6 Conclusions and Perspectives



Publication History

Received: 20 August 2020

Accepted after revision: 10 September 2020

Article published online:
03 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vicente J, Chicote MT, Martínez-Martínez AJ, Abellán-López A. Organometallics 2010; 29: 5693
    • 1b Gilli P, Bertolasi V, Ferretti V, Gilli G. J. Am. Chem. Soc. 2000; 122: 10405
    • 1c Hogenkamp DJ, Johnstone TB. C, Huang J.-C, Li W.-Y, Tran M, Whittemore ER, Bagnera RE, Gee KW. J. Med. Chem. 2007; 50: 3369
    • 1d Machado DF. S, Lopes TO, Lima IT, da Silva Filho DA, de Oliveira HC. B. J. Phys. Chem. C 2016; 120: 17660
    • 1e Nagy PI, Fabian WM. F. J. Phys. Chem. B 2006; 110: 25026
    • 2a Wang L.-L, Han H.-B, Cui Z.-H, Zhao J.-W, Bu Z.-W, Wang Q.-L. Org. Lett. 2020; 22: 873
    • 2b Miao H.-J, Wang L.-L, Han H.-B, Zhao Y.-D, Wang Q.-L, Bu Z.-W. Chem. Sci. 2020; 11: 1418
    • 2c Wu P, He Y, Wang H, Zhou Y.-G, Yu Z. Org. Lett. 2020; 22: 310
    • 2d Liu P, Yang M, Gong Y, Yu Y, Zhao Y.-L. Org. Lett. 2020; 22: 36
    • 2e Du X.-X, Zi Q.-X, Wu Y.-M, Jin Y, Lin J, Yan S.-J. Green Chem. 2019; 21: 1505
    • 2f Li D, Li S, Peng C, Lu L, Wang S, Wang P, Cheng Y.-H, Cong H, Lei A. Chem. Sci. 2019; 10: 2791
    • 2g Liu C.-Z, Han Y, Zhang Y.-Y, Sun J, Yan C.-G. Synthesis 2018; 50: 3715
    • 2h Gao P, Wang J, Bai Z, Fan M.-J, Yang D.-S, Guan Z.-H. Org. Lett. 2018; 20: 3627
    • 2i Cao W.-B, Liu B.-B, Xu X.-P, Ji S.-J. Org. Chem. Front. 2018; 5: 1194
    • 2j Liu F.-J, Sun T.-T, Yang Y.-G, Huang C, Chen X.-B. RSC Adv. 2018; 8: 12635
    • 2k Wang B.-Q, Zhang C.-H, Tiao X.-X, Lin J, Yan S.-J. Org. Lett. 2018; 20: 660
    • 2l Yu F, Huang R, Ni H, Fan J, Yan S, Lin J. Green Chem. 2013; 15: 453
    • 2m Yu F, Yan S, Hu L, Wang Y, Lin J. Org. Lett. 2011; 13: 4782
    • 2n Estévez V, Villacamp M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 3a Stanovnik B, Svete J. Chem. Rev. 2004; 104: 2433
    • 3b Elassar A.-ZA, El-Khair AA. Tetrahedron 2003; 59: 8463
    • 3c Chattopadhyay AK, Hanessian S. Chem. Commun. 2015; 51: 16450
    • 3d Gaber HM, Bagley MC, Muhammad ZA, Gomha SM. RSC Adv. 2017; 7: 14562
    • 3e Zhang L, Dong J, Xu X, Liu Q. Chem. Rev. 2016; 116: 287
    • 3f Wang K.-M, Yan S.-J, Lin J. Eur. J. Org. Chem. 2014; 1129
    • 3g Cao S, Jing Y, Liu Y, Wan J. Chin. J. Org. Chem. 2014; 34: 876
    • 3h Wan J.-P, Gao Y. Chem. Rec. 2016; 16: 1164
  • 4 Wan J.-P, Zhong S, Xie L, Cao X, Liu Y, Wei L. Org. Lett. 2016; 18: 584
  • 5 Jiang Y, Liang G, Zhang C, Loh T.-P. Eur. J. Org. Chem. 2016; 3326
  • 6 Siddaraju Y, Prabhu KR. J. Org. Chem. 2017; 82: 3084
  • 7 Gao Y, Wei L, Liu Y, Wan J.-P. Org. Biomol. Chem. 2017; 15: 4631
  • 8 Gao Y, Liu Y, Wan J.-P. J. Org. Chem. 2019; 84: 2243
  • 9 Yang Z, Wang Y, Hu L, Li A, Yang T, Zhou C. Synthesis 2020; 52: 711
  • 10 Yang Z, Wang Y, Hu L, Li A, Yang T, Zhou C. New J. Chem. 2019; 43: 16441
  • 11 Guo Y, Xiang Y, Wei L, Wan J.-P. Org. Lett. 2018; 20: 3971
  • 12 Zhou P, Hu B, Li L, Rao K, Yang J, Yu F. J. Org. Chem. 2017; 82: 13268
  • 13 Tang Y, Chen Y, Liu H, Guo M. Tetrahedron Lett. 2018; 59: 3703
  • 14 Tian L, Guo Y, Weim L, Wan J.-P, Sheng S. Asian J. Org. Chem. 2019; 8: 1484
  • 15 Liu Y, Xiong J, Wei L, Wan J.-P. Adv. Synth. Catal. 2020; 362: 877
  • 16 Wan J.-P, Lin Y, Cao X, Liu Y, Wei L. Chem. Commun. 2016; 52: 1270
  • 17 Yang Y, Zhong G, Fan J, Liu Y. Eur. J. Org. Chem. 2019; 4422
  • 18 Gan L, Gao Y, Wei L, Wan J.-P. J. Org. Chem. 2019; 84: 1064
  • 19 Yu Q, Zhang Y, Wan J.-P. Green Chem. 2019; 21: 3436
  • 20 Cao S, Zhong S, Xin L, Wan J.-P, Wen C. ChemCatChem 2015; 7: 1478
    • 21a Zheng X, Wan J.-P. Adv. Synth. Catal. 2019; 361: 5690
    • 21b Gan L, Wei L, Wan J.-P. ChemistrySelect 2020; 5: 7822
    • 21c Wang G, Guo Y, Wan J. Chin. J. Org. Chem. 2020; 40: 645
  • 22 Zhou S, Yan B.-W, Fan S.-X, Tian J.-S, Loh T.-P. Org. Lett. 2018; 20: 3975
  • 23 Qi B, Guo S, Zhang W, Yu X, Song C, Zhu J. Org. Lett. 2018; 20: 3996
  • 24 Zhao Y, Zheng Q, Yu C, Liu Z, Wang D, You J, Gao G. Org. Chem. Front. 2018; 5: 2875
  • 25 Yang L, Wei L, Wan J.-P. Chem. Commun. 2018; 54: 7475
  • 26 Zhou S, Wang J, Wang L, Song C, Chen K, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 9384
  • 27 Song C, Yang C, Zeng H, Zhang W, Guo S, Zhu J. Org. Lett. 2018; 20: 3819
  • 28 Wang Z, Xu H. Tetrahedron Lett. 2019; 60: 664
  • 29 Liang G, Rong J, Sun W, Chen G, Jiang Y, Loh TP. Org. Lett. 2018; 20: 7326
  • 30 Thombal RS, Lee YR. Org. Lett. 2018; 20: 4681
  • 31 Duan L, Zhou H, Gu Y, Gong P, Qin M. New J. Chem. 2019; 43: 16131
  • 32 Li Y, Wei L, Wan J.-P, Wen C. Tetrahedron 2017; 73: 2323
  • 33 Zhang Q, Hu B, Zhao Y, Zhao S, Wang Y, Zhang B, Yan S, Yu F. Eur. J. Org. Chem. 2020; 1154
  • 34 Tian L, Wan J.-PSheng S. ChemCatChem 2020; 12: 2533
  • 35 Wan J.-P, Cao S, Liu Y. Org. Lett. 2016; 18: 6034
  • 36 Wan J.-P, Cao S, Liu Y. J. Org. Chem. 2015; 80: 9028
  • 37 Yang L, Wu Y, Yang Y, Wen C, Wan J.-P. Beilstein J. Org. Chem. 2018; 14: 2348
  • 38 Yoshimura A, Jarvi ME, Shea MT, Makitalo CL, Rohde GT, Yusubov MS, Saito A, Zhdankin VV. Eur. J. Org. Chem. 2019; 6682
  • 39 Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P. J. Org. Chem. 2019; 84: 12237
  • 40 Yang Z, Liang Y, Li A, Liu K, Li L, Yang T, Zhou C. J. Org. Chem. 2019; 84: 16262
  • 41 Efimov IV, Matveeva MD, Luque R, Bakulev VA, Voskressensky LG. Eur. J. Org. Chem. 2020; 1108
  • 42 Yuan J, Rao CB, Liang Y, Zhang R, Zhang Q, Hou L, Dong D. Adv. Synth. Catal. 2018; 361: 160
  • 43 Kong L, Shao Y, Li Y, Liu Y, Li Y. J. Org. Chem. 2015; 80: 12641
  • 44 Maezono SM. B, Kim SH, Lee YR. Org. Chem. Front. 2018; 5: 3368
  • 45 Shankaraiah K, Chandrasekhar G, Siva Nagi Reddy K, Sabitha G. Tetrahedron Lett. 2015; 56: 842
  • 46 Li Y, Wang G, Hao G, Wan J.-P. Tetrahedron Lett. 2019; 60: 219
  • 47 Yu F.-C, Zhou B, Xu H, Chang K.-J, Shen Y. Tetrahedron Lett. 2015; 56: 837
  • 48 Cao S, Zhong S, Hu C, Wan J.-P, Wen C. Chin. J. Chem. 2015; 33: 568
  • 49 Cao S, Xin L, Liu Y, Wan J.-P, Wen C. RSC Adv. 2015; 5: 27372
  • 50 Akhtar MS, Shim J.-J, Kim SH, Lee YR. New J. Chem. 2017; 41: 13027
  • 51 Park GE, Maezono SM. B, Ha JH, Shim J.-J, Kim SH, Lee YR. Adv. Synth. Catal. 2018; 360: 4523
    • 52a Gao Y, Hu C, Wen C, Wan J.-P. ACS Omega 2017; 2: 7784
    • 52b Wan J.-P, Cao S, Hu C, Wen C. Asian J. Org. Chem. 2018; 7: 328
  • 53 Aiken S, Anozie K, de Azevedo O, Cowen L, Edgar RJ. L, Gabbutt CD, Heron BM, Lawrence PA, Mills AJ, Rice CR, Urquhart MW. J, Zonidis D. Org. Biomol. Chem. 2019; 17: 9585
  • 54 Sun J, Cheng X, Mansaray JK, Fei W, Wan J, Yao W. Chem. Commun. 2018; 54: 13953
  • 55 Li Y, Cao X, Liu Y, Wan J.-P. Org. Biomol. Chem. 2017; 15: 9585
  • 56 Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu YD, Wu AX. Org. Lett. 2019; 21: 2708
    • 57a Wan J.-P, Jing Y, Wei L. Asian J. Org. Chem. 2017; 6: 666
    • 57b Wakade SB, Tiwari DK, Phanindrudu M, Pushpendra, Tiwari DK. Tetrahedron 2019; 75: 4024
    • 57c Jiang T.-S, Zhou Y, Dai L, Liu X, Zhang X. Tetrahedron Lett. 2019; 60: 2078
  • 58 Luo L, Zhou Z, Zhu J, Lu X, Wang H. Tetrahedron Lett. 2016; 57: 4987
  • 59 Zhou P, Hu B, Rao K, Li L, Yang J, Gao C, Wang F, Yu F. Synlett 2018; 29: 519
    • 60a Xu H, Zhou B, Zhou P, Zhou J, Shen Y, Yu FC, Lu LL. Chem. Commun. 2016; 52: 8002
    • 60b Zhou P, Hu B, Yang J, Li L, Rao K, Zhu D, Yu F. Eur. J. Org. Chem. 2017; 7256
    • 60c Yu F.-C, Zhou B, Xu H, Li Y.-M, Lin J, Yan S.-J, Shen Y. Tetrahedron 2015; 71: 1036
    • 60d Zhou P, Hu B, Zhao S, Zhang Q, Wang Y, Li X, Yu F. Tetrahedron Lett. 2018; 59: 3116
    • 61a Wang F, Jin L, Kong L, Li X. Org. Lett. 2017; 19: 1812
    • 61b Shi P, Wang L, Chen K, Wang J, Zhu J. Org. Lett. 2017; 19: 2418
  • 62 Zhao Q.-L, Xiang H.-Y, Yang C.-H, Xiao J.-A, Xia P.-J, Chen X.-Q, Yang H. ChemistrySelect 2018; 3: 9218
  • 63 Fu L, Wan J.-P. Asian J. Org. Chem. 2019; 8: 767
    • 64a Kandula V, Thota PK, Mallesham P, Raghavulu K, Chatterjee A, Yennam S, Behera M. Synlett 2019; 30: 2295
    • 64b Zhao Q.-L, Xia P.-J, Zheng L, Xie Z.-Z, Hu Y.-Z, Chen G.-J, Chen X.-Q, Xiang H.-Y, Yang H. Tetrahedron 2020; 76: 130833
    • 64c Wang Y., Hu B., Zhang Q., Zhao S., Zhao Y., Zhang B., Yu F.; J. Chem. Res.; 2020, in press; DOI: 10.1177/1747519820923084
    • 65a Lin Y, Wan J.-P, Liu Y. New J. Chem. 2020; 44: 8120
    • 65b Yu Q, Liu Y, Wan J.-P. Org. Chem. Front. 2020; 7: 2770
  • 66 Cheng D, Wang M, Deng Z, Yan X, Xu X, Yan JE. Eur. J. Org. Chem. 2019; 4589
  • 68 Qian J, Lin Z, Wang Z, Peng Z, Wu L, Lu P, Wang Y. J. Org. Chem. 2019; 84: 6395
  • 69 Lichitskii BV, Melekhina VG, Komogortsev AN, Milyutin CV, Fakhrutdinov AN, Gorbunov YO, Krayushkin MM. Org. Biomol. Chem. 2020; 18: 2501
  • 70 Mrug GP, Myshko NV, Bondarenko SP, Sviripa VM, Frasinyuk MS. J. Org. Chem. 2019; 84: 7138
  • 71 Luo T, Wan J.-P, Liu Y. Org. Chem. Front. 2020; 7: 1107
  • 72 Kandula V, Balakrishna C, Behera M, Nagababu U, Kumar GK, Chatterjee A. ChemistrySelect 2019; 4: 14043
  • 73 Wan J.-P, Zhou Y, Liu Y, Sheng S. Green Chem. 2016; 18: 402
  • 74 Castillo JC, Tigreros A, Portilla J. J. Org. Chem. 2018; 83: 10887
  • 75 Kale A, Medishetti N, Nanubolu JB, Atmakur K. Tetrahedron Lett. 2018; 59: 4168
  • 76 Wan J.-P, Zhong S, Liu Y. Synthesis 2015; 47: 3611
  • 77 Sokolova EA, Festa AA, Golantsov NE, Lukonina NS, Ioffe IN, Varlamov AV, Voskressensky LG. Eur. J. Org. Chem. 2019; 6770
  • 78 Xiang H, Zhao QL, Xia PJ, Xiao JA, Ye ZP, Xie X, Sheng H, Chen XQ, Yang H. Org. Lett. 2018; 20: 1363
  • 79 Yuan J, Deng B, Liang Y, Rao CB, Zhang R, Zhao Y, Dong D. Adv. Synth. Catal. 2019; 361: 4324