Semin Thromb Hemost 2021; 47(01): 053-062
DOI: 10.1055/s-0040-1718400
Review Article

The Role of Epigenetics in the Regulation of Hemostatic Balance

Elisa Danese
1   Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
,
Martina Montagnana
1   Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
,
Matteo Gelati
1   Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
,
Giuseppe Lippi
1   Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
› Author Affiliations

Abstract

Epigenetics, a term conventionally used to explain the intricate interplay between genes and the environment, is now regarded as the fundament of developmental biology. Several lines of evidence garnered over the past decades suggest that epigenetic alterations, mostly encompassing DNA methylation, histone tail modifications, and generation of microRNAs, play an important, though still incompletely explored, role in both primary and secondary hemostasis. Epigenetic variations may interplay with platelet functions and their responsiveness to antiplatelet drugs, and they may also exert a substantial contribution in modulating the production and release into the bloodstream of proteins involved in blood coagulation and fibrinolysis. This emerging evidence may have substantial biological and clinical implications. An enhanced understanding of posttranscriptional mechanisms would help to clarify some remaining enigmatic issues in primary and secondary hemostasis, which cannot be thoughtfully explained by genetics or biochemistry alone. Increased understanding would also pave the way to developing innovative tests for better assessment of individual risk of bleeding or thrombosis. The accurate recognition of key epigenetic mechanisms in hemostasis would then contribute to identify new putative therapeutic targets, and develop innovative agents that could be helpful for preventing or managing a vast array of hemostasis disturbances.



Publication History

Article published online:
23 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Tronick E, Hunter RG. Waddington, dynamic systems, and epigenetics. Front Behav Neurosci 2016; 10: 107
  • 2 Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life 2014; 66 (04) 240-256
  • 3 Gao J, Ma X, Zhang Y, Guo M, Shi D. The role of microRNAs in prethrombotic status associated with coronary artery disease. Thromb Haemost 2017; 117 (03) 429-436
  • 4 Ward-Caviness CK, Huffman JE, Everett K. et al. DNA methylation age is associated with an altered hemostatic profile in a multiethnic meta-analysis. Blood 2018; 132 (17) 1842-1850
  • 5 Arroyo AB, de Los Reyes-García AM, Teruel-Montoya R, Vicente V, González-Conejero R, Martínez C. microRNAs in the haemostatic system: more than witnesses of thromboembolic diseases?. Thromb Res 2018; 166: 1-9
  • 6 Ito S, Shen L, Dai Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333 (6047): 1300-1303
  • 7 Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 2002; 22 (09) 3157-3173
  • 8 Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P. et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics 2015; 7: 55
  • 9 Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994; 22 (15) 2990-2997
  • 10 Zuo T, Tycko B, Liu TM, Lin JJ, Huang TH. Methods in DNA methylation profiling. Epigenomics 2009; 1 (02) 331-345
  • 11 Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010; 11 (03) 191-203
  • 12 Lippi G, Favaloro EJ, Buoro S. Platelet transfusion thresholds: how low can we go in respect to platelet counting?. Semin Thromb Hemost 2020; 46 (03) 238-244
  • 13 Izzi B, Gianfagna F, Yang WY. et al; Moli-family Investigators. Variation of PEAR1 DNA methylation influences platelet and leukocyte function. Clin Epigenetics 2019; 11 (01) 151
  • 14 Corbin LJ, Taylor A, White S. et al. Epigenetic regulation of PAR4-related platelet activation: mechanistic links between environmental exposure and cardiovascular disease. bioRxiv 2018; DOI: 10.1101/473728.
  • 15 Gao S, Han Y, Chen X. et al. Epigenetic modulation of glycoprotein VI gene expression by DNA methylation. Life Sci 2020; 241: 117103
  • 16 Bray PF, Howard TD, Vittinghoff E, Sane DC, Herrington DM. Effect of genetic variations in platelet glycoproteins Ibalpha and VI on the risk for coronary heart disease events in postmenopausal women taking hormone therapy. Blood 2007; 109 (05) 1862-1869
  • 17 Li XG, Ma N, Wang B. et al. The impact of P2Y12 promoter DNA methylation on the recurrence of ischemic events in Chinese patients with ischemic cerebrovascular disease. Sci Rep 2016; 6: 34570
  • 18 Su J, Li X, Yu Q. et al. Association of P2Y12 gene promoter DNA methylation with the risk of clopidogrel resistance in coronary artery disease patients. BioMed Res Int 2014; 2014: 450814
  • 19 Friso S, Lotto V, Choi S-W. et al. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J Med Genet 2012; 49 (03) 192-199
  • 20 El-Maarri O, Becker T, Junen J. et al. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet 2007; 122 (05) 505-514
  • 21 Jamil MA, Sharma A, Nuesgen N. et al. F8 inversions at Xq28 causing hemophilia A are associated with specific methylation changes: implication for molecular epigenetic diagnosis. Front Genet 2019; 10: 508
  • 22 Dunoyer-Geindre S, Rivier-Cordey AS, Caetano C, Fish RJ, Kruithof EK. Effect of regulatory element DNA methylation on tissue-type plasminogen activator gene expression. PLoS One 2016; 11 (12) e0167588
  • 23 Dunoyer-Geindre S, Kruithof EK. Epigenetic control of tissue-type plasminogen activator synthesis in human endothelial cells. Cardiovasc Res 2011; 90 (03) 457-463
  • 24 Zwingerman N, Kassam I, Truong V. et al. Role of DNA methylation in candidate genes regions on tissue plasminogen activator levels. J Thromb Haemost 2015; 13: 73-74
  • 25 Bagnall RD, Giannelli F, Green PM. Int22h-related inversions causing hemophilia A: a novel insight into their origin and a new more discriminant PCR test for their detection. J Thromb Haemost 2006; 4 (03) 591-598
  • 26 Oldenburg J, El-Maarri O. New insight into the molecular basis of hemophilia A. Int J Hematol 2006; 83 (02) 96-102
  • 27 Luo Z, Liu R, Sun B. et al. Identification of gene modules associated with warfarin dosage by a genome-wide DNA methylation study. Pharmazie 2018; 73 (05) 288-293
  • 28 Rocañín-Arjó A, Dennis J, Suchon P. et al. Thrombin generation potential and whole-blood DNA methylation. Thromb Res 2015; 135 (03) 561-564
  • 29 Olsson Lindvall M, Davila Lopez M, Klasson S. et al. A comprehensive sequencing-based analysis of allelic methylation patterns in hemostatic genes in human liver. Thromb Haemost 2020; 120 (02) 229-242
  • 30 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (05) 843-854
  • 31 Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science 2003; 301 (5631): 336-338
  • 32 Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15 (08) 509-524
  • 33 Bernstein E, Kim SY, Carmell MA. et al. Dicer is essential for mouse development. Nat Genet 2003; 35 (03) 215-217
  • 34 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (02) 215-233
  • 35 Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 2016; 17 (10) E1712
  • 36 Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 2008; 9 (02) 102-114
  • 37 Mattick JS, Makunin IV. Small regulatory RNAs in mammals. Hum Mol Genet 2005; 14 (Spec No 1, Suppl 1): R121-R132
  • 38 Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C. MicroRNAs: control and loss of control in human physiology and disease. World J Surg 2009; 33 (04) 667-684
  • 39 Attard C, van der Straaten T, Karlaftis V, Monagle P, Ignjatovic V. Developmental hemostasis: age-specific differences in the levels of hemostatic proteins. J Thromb Haemost 2013; 11 (10) 1850-1854
  • 40 Appel IM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishuizen A. Age dependency of coagulation parameters during childhood and puberty. J Thromb Haemost 2012; 10 (11) 2254-2263
  • 41 Favaloro EJ, Lippi G. Translational aspects of developmental hemostasis: infants and children are not miniature adults and even adults may be different. Ann Transl Med 2017; 5 (10) 212
  • 42 Teruel R, Corral J, Pérez-Andreu V, Martínez-Martínez I, Vicente V, Martínez C. Potential role of miRNAs in developmental haemostasis. PLoS One 2011; 6 (03) e17648
  • 43 Gidlöf O, van der Brug M, Ohman J. et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 2013; 121 (19) 3908-3917 , S1–S26
  • 44 Lazar S, Goldfinger LE. Platelet microparticles and miRNA transfer in cancer progression: many targets, modes of action, and effects across cancer stages. Front Cardiovasc Med 2018; 5: 13
  • 45 Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018; 122 (02) 337-351
  • 46 Camaioni C, Gustapane M, Cialdella P, Della Bona R, Biasucci LM. Microparticles and microRNAs: new players in the complex field of coagulation. Intern Emerg Med 2013; 8 (04) 291-296
  • 47 Lindsay CR, Edelstein LC. MicroRNAs in platelet physiology and function. Semin Thromb Hemost 2016; 42 (03) 215-222
  • 48 Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP, Bray PF. MicroRNAs in platelet production and activation. J Thromb Haemost 2013; 11 (Suppl. 01) 340-350
  • 49 Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16 (09) 961-966
  • 50 Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost 2012; 108 (04) 599-604
  • 51 Rowley JW, Chappaz S, Corduan A. et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016; 127 (14) 1743-1751
  • 52 Simon LM, Edelstein LC, Nagalla S. et al. Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 2014; 123 (16) e37-e45
  • 53 Kandi R, Gutti U, Undi R, Sahu I, Gutti RK. Understanding thrombocytopenia: physiological role of microRNA in survival of neonatal megakaryocytes. J Thromb Thrombolysis 2015; 40 (03) 310-316
  • 54 Plé H, Landry P, Benham A, Coarfa C, Gunaratne PH, Provost P. The repertoire and features of human platelet microRNAs. PLoS One 2012; 7 (12) e50746
  • 55 Dahiya N, Sarachana T, Vu L. et al. Platelet microRNAs: an overview. Transfus Med Rev 2015; 29 (04) 215-219
  • 56 Emmrich S, Henke K, Hegermann J, Ochs M, Reinhardt D, Klusmann JH. miRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol 2012; 91 (11) 1673-1684
  • 57 Kandi R, Undi R, Gutti RK. MiR-125b regulates cell proliferation and survival in neonatal megakaryocytes. Ann Hematol 2014; 93 (06) 1065-1066
  • 58 Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol 2010; 77 (06) 1016-1024
  • 59 Navarro F, Gutman D, Meire E. et al. miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood 2009; 114 (10) 2181-2192
  • 60 Kamat V, Paluru P, Myint M, French DL, Gadue P, Diamond SL. MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells. Stem Cells 2014; 32 (05) 1337-1346
  • 61 Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 2003; 22 (17) 4478-4488
  • 62 Barroga CF, Pham H, Kaushansky K. Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 2008; 36 (12) 1585-1592
  • 63 Lu J, Guo S, Ebert BL. et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14 (06) 843-853
  • 64 Romania P, Lulli V, Pelosi E, Biffoni M, Peschle C, Marziali G. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol 2008; 143 (04) 570-580
  • 65 O'Connell RM, Rao DS, Chaudhuri AA. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205 (03) 585-594
  • 66 Girardot M, Pecquet C, Boukour S. et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 2010; 116 (03) 437-445
  • 67 O'Connell RM, Zhao JL, Rao DS. MicroRNA function in myeloid biology. Blood 2011; 118 (11) 2960-2969
  • 68 Labbaye C, Spinello I, Quaranta MT. et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 2008; 10 (07) 788-801
  • 69 Garzon R, Volinia S, Liu CG. et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111 (06) 3183-3189
  • 70 Starczynowski DT, Kuchenbauer F, Argiropoulos B. et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16 (01) 49-58
  • 71 Zhai PF, Wang F, Su R. et al. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem 2014; 289 (33) 22600-22613
  • 72 Felli N, Pedini F, Romania P. et al. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 2009; 94 (04) 479-486
  • 73 Weiss CN, Ito K. microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1 . Blood Adv 2019; 3 (01) 33-46
  • 74 Zhang Z, Ran Y, Shaw TS, Peng Y. MicroRNAs 10a and 10b regulate the expression of human platelet glycoprotein Ibα for normal megakaryopoiesis. Int J Mol Sci 2016; 17 (11) E1873
  • 75 Xiang Y, Cheng J, Wang D. et al. Hyperglycemia repression of miR-24 coordinately upregulates endothelial cell expression and secretion of von Willebrand factor. Blood 2015; 125 (22) 3377-3387
  • 76 Nagalla S, Shaw C, Kong X. et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011; 117 (19) 5189-5197
  • 77 Sunderland N, Skroblin P, Barwari T. et al. MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ Res 2017; 120 (02) 418-435
  • 78 Chyrchel B, Totoń-Żurańska J, Kruszelnicka O. et al. Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: a preliminary report. Platelets 2015; 26 (06) 593-597
  • 79 Zampetaki A, Willeit P, Tilling L. et al. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol 2012; 60 (04) 290-299
  • 80 Shi R, Zhou X, Ji WJ. et al. The emerging role of miR-223 in platelet reactivity: implications in antiplatelet therapy. BioMed Res Int 2015; 2015: 981841
  • 81 Willeit P, Zampetaki A, Dudek K. et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 2013; 112 (04) 595-600
  • 82 Laffont B, Corduan A, Plé H. et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 2013; 122 (02) 253-261
  • 83 Pan Y, Liang H, Liu H. et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 2014; 192 (01) 437-446
  • 84 Kaudewitz D, Skroblin P, Bender LH. et al. Association of microRNAs and YRNAs with platelet function. Circ Res 2016; 118 (03) 420-432
  • 85 Shi R, Ge L, Zhou X. et al. Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb Res 2013; 131 (06) 508-513
  • 86 Zhang YY, Zhou X, Ji WJ. et al. Decreased circulating microRNA-223 level predicts high on-treatment platelet reactivity in patients with troponin-negative non-ST elevation acute coronary syndrome. J Thromb Thrombolysis 2014; 38 (01) 65-72
  • 87 Wang H, Wang Q, Kleiman K, Guo C, Eitzman DT. Hematopoietic deficiency of miR-223 attenuates thrombosis in response to photochemical injury in mice. Sci Rep 2017; 7 (01) 1606
  • 88 Amelirad A, Shamsasenjan K, Akbarzadehlaleh P, Pashoutan Sarvar D. Signaling pathways of receptors involved in platelet activation and shedding of these receptors in stored platelets. Adv Pharm Bull 2019; 9 (01) 38-47
  • 89 Wang S, Aurora AB, Johnson BA. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15 (02) 261-271
  • 90 Yu XY, Chen JY, Zheng ZW. et al. Plasma miR-126 as a potential marker predicting major adverse cardiac events in dual antiplatelet-treated patients after percutaneous coronary intervention. EuroIntervention 2013; 9 (05) 546-554
  • 91 Kondkar AA, Bray MS, Leal SM. et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 2010; 8 (02) 369-378
  • 92 Fort A, Borel C, Migliavacca E, Antonarakis SE, Fish RJ, Neerman-Arbez M. Regulation of fibrinogen production by microRNAs. Blood 2010; 116 (14) 2608-2615
  • 93 Muth M, Theophile K, Hussein K, Jacobi C, Kreipe H, Bock O. “Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA - a mechanism involved in SERPINE1 (PAI-1) overexpression”. J Transl Med 2010; 8: 33
  • 94 Brock M, Trenkmann M, Gay RE, Gay S, Speich R, Huber LC. MicroRNA-18a enhances the interleukin-6-mediated production of the acute-phase proteins fibrinogen and haptoglobin in human hepatocytes. J Biol Chem 2011; 286 (46) 40142-40150
  • 95 Hatziapostolou M, Polytarchou C, Aggelidou E. et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2011; 147 (06) 1233-1247
  • 96 Fish RJ, Neerman-Arbez M. Fibrinogen gene regulation. Thromb Haemost 2012; 108 (03) 419-426
  • 97 Lukowski SW, Fish RJ, Dermitzakis E, Neerman-Arbez M. Transcriptome analysis of the miR-29-mediated control of fibrinogen gene expression. J Thromb Haemost 2013; 11 (Suppl. 02) 100
  • 98 Teruel R, Pérez-Sánchez C, Corral J. et al. Identification of miRNAs as potential modulators of tissue factor expression in patients with systemic lupus erythematosus and antiphospholipid syndrome. J Thromb Haemost 2011; 9 (10) 1985-1992
  • 99 Zhang X, Yu H, Lou JR. et al. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 2011; 286 (02) 1429-1435
  • 100 Yu G, Li H, Wang X. et al. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Mol Cell Biochem 2013; 380 (1-2): 239-247
  • 101 Witkowski M, Weithauser A, Tabaraie T. et al. Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler Thromb Vasc Biol 2016; 36 (06) 1263-1271
  • 102 Sahu A, Jha PK, Prabhakar A. et al. MicroRNA-145 impedes thrombus formation via targeting tissue factor in venous thrombosis. EBioMedicine 2017; 26: 175-186
  • 103 Salloum-Asfar S, Teruel-Montoya R, Arroyo AB. et al. Regulation of coagulation factor XI expression by microRNAs in the human liver. PLoS One 2014; 9 (11) e111713
  • 104 Sennblad B, Basu S, Mazur J. et al. Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels. Hum Mol Genet 2017; 26 (03) 637-649
  • 105 Elgheznawy A, Shi L, Hu J. et al. Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res 2015; 117 (02) 157-165
  • 106 Tay JW, Romeo G, Hughes QW, Baker RI. Micro-ribonucleic Acid 494 regulation of protein S expression. J Thromb Haemost 2013; 11 (08) 1547-1555
  • 107 Ali HO, Arroyo AB, González-Conejero R. et al. The role of microRNA-27a/b and microRNA-494 in estrogen-mediated downregulation of tissue factor pathway inhibitor α. J Thromb Haemost 2016; 14 (06) 1226-1237
  • 108 B Arroyo A, Salloum-Asfar S, Pérez-Sánchez C. et al. Regulation of TFPIα expression by miR-27a/b-3p in human endothelial cells under normal conditions and in response to androgens. Sci Rep 2017; 7: 43500
  • 109 Luo M, Li R, Ren M. et al. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets. Sci Rep 2016; 6: 36687
  • 110 Marchand A, Proust C, Morange PE, Lompré AM, Trégouët DA. miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 2012; 7 (08) e44532
  • 111 Patel N, Tahara SM, Malik P, Kalra VK. Involvement of miR-30c and miR-301a in immediate induction of plasminogen activator inhibitor-1 by placental growth factor in human pulmonary endothelial cells. Biochem J 2011; 434 (03) 473-482
  • 112 Liao YC, Wang YS, Guo YC, Lin WL, Chang MH, Hank Juo SH. Let-7g improves multiple endothelial functions through targeting TGF-beta and SIRT-1 signaling. J Am Coll Cardiol 2014; 63 (16) 1685-1694
  • 113 Nourse J, Braun J, Lackner K, Hüttelmaier S, Danckwardt S. Large-scale identification of functional microRNA targeting reveals cooperative regulation of the hemostatic system. J Thromb Haemost 2018; 16 (11) 2233-2245