Journal of Pediatric Neurology 2023; 21(04): 299-305
DOI: 10.1055/s-0041-1727141
Review Article

CDKL5 Gene: Beyond Rett Syndrome

Lina Maria Ciccia
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Bruna Scalia
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Valeria Venti
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Francesco Pizzo
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Maria Grazia Pappalardo
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Flavia Maria Consuelo La Mendola
2   Unit of Pediatrics, Caltanissetta Hospital, Caltanissetta, Italy
,
Raffaele Falsaperla
3   Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
4   Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
,
5   Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
› Author Affiliations

Abstract

CDKL5 is a gene located in the X-chromosome (Xp22) encoding a serine/threonine kinase involved in various signaling pathways, implicated in cell proliferation, axon development, dendrite growth, synapse formation, and maintenance. Mutations occurring in this gene have been associated with drug-resistant early-onset epilepsy, with multiple seizures type, and deep cognitive and motor development delay with poor or absent speech, ataxic gait or inability to walk, hand stereotypies and in a few cases decrement of head growth. Many aspects remain unclear about the CDKL5 deficiency disorders, research will be fundamental to better understand the pathogenesis of neurological damage and consequently developed more targeted and profitable therapies, as there is not, at the present, a gene-based treatment and the seizures are in most of the cases drug resistant. In this article, we summarize the actual knowledge about CDKL5 gene function and mostly the consequence given by its dysfunction, also examining the possible therapeutic approaches.



Publication History

Received: 20 February 2021

Accepted: 21 February 2021

Article published online:
13 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Meisler MH, Kearney J, Ottman R, Escayg A. Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001; 35: 567-588
  • 2 Avanzini G, Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol 2003; 2 (01) 33-42
  • 3 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Early history of the different forms of neurofibromatosis from ancient Egypt to the British Empire and beyond: first descriptions, medical curiosities, misconceptions, landmarks, and the persons behind the syndromes. Am J Med Genet A 2018; 176 (03) 515-550
  • 4 Barbagallo M, Ruggieri M, Incorpora G. et al. Infantile spasms in the setting of Sturge-Weber syndrome. Childs Nerv Syst 2009; 25 (01) 111-118
  • 5 Ruggieri M, Praticò AD, Serra A. et al. Early history of neurofibromatosis type 2 and related forms: earliest descriptions of acoustic neuromas, medical curiosities, misconceptions, landmarks and the pioneers behind the eponyms. Childs Nerv Syst 2017; 33 (04) 549-560
  • 6 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Rediagnosing one of Smith's patients (John McCann) with “neuromas tumours” (1849). Neurol Sci 2017; 38 (03) 493-499
  • 7 Praticò AD, Falsaperla R, Ruggieri M, Corsello G, Pavone P. Prognostic challenges of SCN1A genetic mutations: report on two children with mild features. J Pediatr Neurol 2016; 14: 82-88
  • 8 Crino PB, Miyata H, Vinters HV. Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 2002; 12 (02) 212-233
  • 9 Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology 2005; 65 (12) 1873-1887
  • 10 Pavone V, Signorelli SS, Praticò AD. et al. Total hemi-overgrowth in pigmentary mosaicism of the (hypomelanosis of) ito type: eight case reports. Medicine (Baltimore) 2016; 95 (10) e2705
  • 11 Pavone P, Praticò AD, Falsaperla R. et al. Congenital generalized hypertrichosis: the skin as a clue to complex malformation syndromes. Ital J Pediatr 2015; 41: 55
  • 12 Pavone P, Briuglia S, Falsaperla R. et al. Wide spectrum of congenital anomalies including choanal atresia, malformed extremities, and brain and spinal malformations in a girl with a de novo 5.6-Mb deletion of 13q12.11-13q12.13. Am J Med Genet A 2014; 164A (07) 1734-1743
  • 13 Ruggieri M, Polizzi A, Marceca GP, Catanzaro S, Praticò AD, Di Rocco C. Introduction to phacomatoses (neurocutaneous disorders) in childhood. Childs Nerv Syst 2020; 36 (10) 2229-2268
  • 14 Castrén M, Gaily E, Tengström C, Lähdetie J, Archer H, Ala-Mello S. Epilepsy caused by CDKL5 mutations. Eur J Paediatr Neurol 2011; 15 (01) 65-69
  • 15 Evans JC, Archer HL, Colley JP. et al. Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet 2005; 13 (10) 1113-1120
  • 16 Jähn J, Caliebe A, von Spiczak S. et al. CDKL5 mutations as a cause of severe epilepsy in infancy: clinical and electroencephalographic long-term course in 4 patients. J Child Neurol 2013; 28 (07) 937-941
  • 17 Allou L, Julia S, Amsallem D. et al. Rett-like phenotypes: expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5-related disease. Clin Genet 2017; 91 (03) 431-440
  • 18 Archer HL, Evans J, Edwards S. et al. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 2006; 43 (09) 729-734
  • 19 Klein KM, Yendle SC, Harvey AS. et al. A distinctive seizure type in patients with CDKL5 mutations: hypermotor-tonic-spasms sequence. Neurology 2011; 76 (16) 1436-1438
  • 20 Moseley BD, Dhamija R, Wirrell EC, Nickels KC. Historic, clinical, and prognostic features of epileptic encephalopathies caused by CDKL5 mutations. Pediatr Neurol 2012; 46 (02) 101-105
  • 21 Russo S, Marchi M, Cogliati F. et al. Novel mutations in the CDKL5 gene, predicted effects and associated phenotypes. Neurogenetics 2009; 10 (03) 241-250
  • 22 Ruggieri M, Praticò AD, Scuderi A, Sorge G, Polizzi A. The multiple faces of artwork diagnoses. Lancet Neurol 2017; 16 (06) 417-418
  • 23 Tao J, Van Esch H, Hagedorn-Greiwe M. et al. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet 2004; 75 (06) 1149-1154
  • 24 Fehr S, Leonard H, Ho G. et al. There is variability in the attainment of developmental milestones in the CDKL5 disorder. J Neurodev Disord 2015; 7 (01) 2
  • 25 Okuda K, Kobayashi S, Fukaya M. et al. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol Dis 2017; 106: 158-170
  • 26 Pavone P, Falsaperla R, Ruggieri M. et al. Clinical course of N-methyl-D-aspartate receptor encephalitis and the effectiveness of cyclophosphamide treatment. J Pediatr Neurol 2017; 15: 84-49
  • 27 Ranieri C, Di Tommaso S, Loconte DC. et al. In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 2018; 19 (02) 77-91
  • 28 Chen Q, Zhu YC, Yu J. et al. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 2010; 30 (38) 12777-12786
  • 29 Nawaz MS, Giarda E, Bedogni F. et al. CDKL5 and shootin1 interact and concur in regulating neuronal polarization. PLoS One 2016; 11 (02) e0148634
  • 30 Valli E, Trazzi S, Fuchs C. et al. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells. Biochim Biophys Acta 2012; 1819 (11-12): 1173-1185
  • 31 Fuchs C, Trazzi S, Torricella R. et al. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling. Neurobiol Dis 2014; 70: 53-68
  • 32 Barbiero I, Peroni D, Tramarin M. et al. The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5-IQGAP1 complex. Hum Mol Genet 2017; 26 (18) 3520-3530
  • 33 Barbiero I, Valente D, Chandola C. et al. CDKL5 localizes at the centrosome and midbody and is required for faithful cell division. Sci Rep 2017; 7 (01) 6228
  • 34 Pavone P, Rizzo R, Conti I. et al. Primary headaches in children: clinical findings on the association with other conditions. Int J Immunopathol Pharmacol 2012; 25 (04) 1083-1091
  • 35 Olson HE, Demarest ST, Pestana-Knight EM. et al. Cyclin-dependent kinase-like 5 deficiency disorder: clinical review. Pediatr Neurol 2019; 97: 18-25
  • 36 Fuchs C, Rimondini R, Viggiano R. et al. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol Dis 2015; 82: 298-310
  • 37 Luo L. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000; 1 (03) 173-180
  • 38 Mangatt M, Wong K, Anderson B. et al. Prevalence and onset of comorbidities in the CDKL5 disorder differ from Rett syndrome. Orphanet J Rare Dis 2016; 11: 39
  • 39 Zhou P, Porcionatto M, Pilapil M. et al. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 2007; 55 (01) 53-68
  • 40 Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6 (02) 167-180
  • 41 Schroeder E, Yuan L, Seong E. et al. Neuron-type specific loss of CDKL5 leads to alterations in mTOR signaling and synaptic markers. Mol Neurobiol 2019; 56 (06) 4151-4162
  • 42 Wang IT, Allen M, Goffin D. et al. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A 2012; 109 (52) 21516-21521
  • 43 Sheng M, Hoogenraad CC. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 2007; 76: 823-847
  • 44 Zhu YC, Li D, Wang L. et al. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 2013; 110 (22) 9118-9123
  • 45 Ricciardi S, Ungaro F, Hambrock M. et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 2012; 14 (09) 911-923
  • 46 Funke L, Dakoji S, Bredt DS. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 2005; 74: 219-245
  • 47 Zhang Y, Matt L, Patriarchi T. et al. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO J 2014; 33 (12) 1341-1353
  • 48 Pavone P, Praticò AD, Gentile G. et al. A neurocutaneous phenotype with paired hypo- and hyperpigmented macules, microcephaly and stunted growth as prominent features. Eur J Med Genet 2016; 59 (05) 283-289
  • 49 Della Sala G, Putignano E, Chelini G. et al. Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry 2016; 80 (04) 302-311
  • 50 Trazzi S, De Franceschi M, Fuchs C. et al. CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder. Hum Mol Genet 2018; 27 (09) 1572-1592
  • 51 Elia M, Falco M, Ferri R. et al. CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy. Neurology 2008; 71 (13) 997-999
  • 52 Fichou Y, Nectoux J, Bahi-Buisson N, Chelly J, Bienvenu T. An isoform of the severe encephalopathy-related CDKL5 gene, including a novel exon with extremely high sequence conservation, is specifically expressed in brain. J Hum Genet 2011; 56 (01) 52-57
  • 53 Sartori S, Di Rosa G, Polli R. et al. A novel CDKL5 mutation in a 47,XXY boy with the early-onset seizure variant of Rett syndrome. Am J Med Genet A 2009; 149A (02) 232-236
  • 54 Liang JS, Shimojima K, Takayama R. et al. CDKL5 alterations lead to early epileptic encephalopathy in both genders. Epilepsia 2011; 52 (10) 1835-1842
  • 55 Bahi-Buisson N, Villeneuve N, Caietta E. et al. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A 2012; 158A (07) 1612-1619
  • 56 Akamine S, Ishizaki Y, Sakai Y. et al. A male case with CDKL5-associated encephalopathy manifesting transient methylmalonic acidemia. Eur J Med Genet 2018; 61 (08) 451-454
  • 57 Mei D, Darra F, Barba C. et al. Optimizing the molecular diagnosis of CDKL5 gene-related epileptic encephalopathy in boys. Epilepsia 2014; 55 (11) 1748-1753
  • 58 Mirzaa GM, Paciorkowski AR, Marsh ED. et al. CDKL5 and ARX mutations in males with early-onset epilepsy. Pediatr Neurol 2013; 48 (05) 367-377
  • 59 Lilles S, Talvik I, Noormets K. et al. CDKL5 gene-related epileptic encephalopathy in estonia: four cases, one novel mutation causing severe phenotype in a boy, and overview of the literature. Neuropediatrics 2016; 47 (06) 361-367
  • 60 Masliah-Plachon J, Auvin S, Nectoux J, Fichou Y, Chelly J, Bienvenu T. Somatic mosaicism for a CDKL5 mutation as an epileptic encephalopathy in males. Am J Med Genet A 2010; 152A (08) 2110-2111
  • 61 Wong VC, Kwong AK. CDKL5 variant in a boy with infantile epileptic encephalopathy: case report. Brain Dev 2015; 37 (04) 446-448
  • 62 Fraser H, Goldman A, Wright R, Banka S. Deciphering Developmental Disorders Study. A maternally inherited frameshift CDKL5 variant in a male with global developmental delay and late-onset generalized epilepsy. Am J Med Genet A 2019; 179 (03) 507-511
  • 63 Bahi-Buisson N, Nectoux J, Rosas-Vargas H. et al. Key clinical features to identify girls with CDKL5 mutations. Brain 2008; 131 (Pt 10): 2647-2661
  • 64 Fehr S, Downs J, Ho G. et al. Functional abilities in children and adults with the CDKL5 disorder. Am J Med Genet A 2016; 170 (11) 2860-2869
  • 65 Fehr S, Wong K, Chin R. et al. Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder. Neurology 2016; 87 (21) 2206-2213
  • 66 Scala E, Ariani F, Mari F. et al. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet 2005; 42 (02) 103-107
  • 67 Boutry-Kryza N, Labalme A, Ville D. et al. Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur J Med Genet 2015; 58 (02) 51-58
  • 68 Incorpora G, Pavone P, Castellano-Chiodo D, Praticò AD, Ruggieri M, Pavone L. Gelastic seizures due to hypothalamic hamartoma: rapid resolution after endoscopic tumor disconnection. Neurocase 2013; 19 (05) 458-461
  • 69 Falsaperla R, Perciavalle V, Pavone P. et al. Unilateral eye blinking arising from the ictal ipsilateral occipital area. Clin EEG Neurosci 2016; 47 (03) 243-246
  • 70 Pintaudi M, Baglietto MG, Gaggero R. et al. Clinical and electroencephalographic features in patients with CDKL5 mutations: two new Italian cases and review of the literature. Epilepsy Behav 2008; 12 (02) 326-331
  • 71 Solazzi R, Fiorini E, Parrini E, Darra F, Dalla Bernardina B, Cantalupo G. Diaper changing-induced reflex seizures in CDKL5-related epilepsy. Epileptic Disord 2018; 20 (05) 428-433
  • 72 Szafranski P, Golla S, Jin W. et al. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J Hum Genet 2015; 23 (07) 915-921
  • 73 Weaving LS, Christodoulou J, Williamson SL. et al. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 2004; 75 (06) 1079-1093
  • 74 Pavone P, Falsaperla R, Ruggieri M, Praticò AD, Pavone L. West syndrome treatment: new roads for an old syndrome. Front Neurol 2013; 4: 113
  • 75 Falsaperla R, Praticò AD, Ruggieri M. et al. Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr 2016; 42 (01) 78
  • 76 Pavone P, Praticò AD, Pavone V. et al. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43 (01) 6
  • 77 Pavone P, Praticò AD, Ruggieri M. et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25 (02) 513-517
  • 78 Bahi-Buisson N, Girard B, Gautier A. et al. Epileptic encephalopathy in a girl with an interstitial deletion of Xp22 comprising promoter and exon 1 of the CDKL5 gene. Am J Med Genet B Neuropsychiatr Genet 2010; 153B (01) 202-207
  • 79 Boutry-Kryza N, Ville D, Labalme A. et al. Complex mosaic CDKL5 deletion with two distinct mutant alleles in a 4-year-old girl. Am J Med Genet A 2014; 164A (08) 2025-2028
  • 80 Córdova-Fletes C, Rademacher N, Müller I. et al. CDKL5 truncation due to a t(X;2)(p22.1;p25.3) in a girl with X-linked infantile spasm syndrome. Clin Genet 2010; 77 (01) 92-96
  • 81 Erez A, Patel AJ, Wang X. et al. Alu-specific microhomology-mediated deletions in CDKL5 in females with early-onset seizure disorder. Neurogenetics 2009; 10 (04) 363-369
  • 82 Mei D, Marini C, Novara F. et al. Xp22.3 genomic deletions involving the CDKL5 gene in girls with early onset epileptic encephalopathy. Epilepsia 2010; 51 (04) 647-654
  • 83 Nectoux J, Heron D, Tallot M, Chelly J, Bienvenu T. Maternal origin of a novel C-terminal truncation mutation in CDKL5 causing a severe atypical form of Rett syndrome. Clin Genet 2006; 70 (01) 29-33
  • 84 Psoni S, Willems PJ, Kanavakis E. et al. A novel p.Arg970X mutation in the last exon of the CDKL5 gene resulting in late-onset seizure disorder. Eur J Paediatr Neurol 2010; 14 (02) 188-191
  • 85 Saitsu H, Osaka H, Nishiyama K. et al. A girl with early-onset epileptic encephalopathy associated with microdeletion involving CDKL5. Brain Dev 2012; 34 (05) 364-367
  • 86 Hadzsiev K, Polgar N, Bene J. et al. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations. J Hum Genet 2011; 56 (03) 183-187
  • 87 Intusoma U, Hayeeduereh F, Plong-On O. et al. Mutation screening of the CDKL5 gene in cryptogenic infantile intractable epilepsy and review of clinical sensitivity. Eur J Paediatr Neurol 2011; 15 (05) 432-438
  • 88 Bertani I, Rusconi L, Bolognese F. et al. Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation. J Biol Chem 2006; 281 (42) 32048-32056
  • 89 Rusconi L, Salvatoni L, Giudici L. et al. CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem 2008; 283 (44) 30101-30111
  • 90 Ruggieri M, Milone P, Pavone P. et al. Nevus vascularis mixtus (cutaneous vascular twin nevi) associated with intracranial vascular malformation of the Dyke-Davidoff-Masson type in two patients. Am J Med Genet A 2012; 158A (11) 2870-2880
  • 91 Ruggieri M, Iannetti P, Pavone L. Delineation of a newly recognized neurocutaneous malformation syndrome with “cutis tricolor”. Am J Med Genet A 2003; 120A (01) 110-116
  • 92 Pavone P, Praticò AD, Vitaliti G. et al. Hydranencephaly: cerebral spinal fluid instead of cerebral mantles. Ital J Pediatr 2014; 40: 79
  • 93 Ruggieri M, Praticò AD, Serra A. et al. Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies. Acta Otorhinolaryngol Ital 2016; 36 (05) 345-367
  • 94 Polizzi A, Finocchiaro M, Parano E, Pavone P, Musumeci S, Polizzi A. Recurrent peripheral neuropathy in a girl with celiac disease. J Neurol Neurosurg Psychiatry 2000; 68 (01) 104-105
  • 95 Vincent A, Jacobson L, Plested P. et al. Antibodies affecting ion channel function in acquired neuromyotonia, in seropositive and seronegative myasthenia gravis, and in antibody-mediated arthrogryposis multiplex congenita. Ann N Y Acad Sci 1998; 841: 482-496
  • 96 Caltabiano R, Magro G, Polizzi A. et al. A mosaic pattern of INI1/SMARCB1 protein expression distinguishes Schwannomatosis and NF2-associated peripheral schwannomas from solitary peripheral schwannomas and NF2-associated vestibular schwannomas. Childs Nerv Syst 2017; 33 (06) 933-940
  • 97 Müller A, Helbig I, Jansen C. et al. Retrospective evaluation of low long-term efficacy of antiepileptic drugs and ketogenic diet in 39 patients with CDKL5-related epilepsy. Eur J Paediatr Neurol 2016; 20 (01) 147-151
  • 98 Pratico AD, Ruggieri M, Falsaperla R, Pavone P. A probable topiramate-induced limbs paraesthesia and rigid fingers flexion. Curr Drug Saf 2018; 13 (02) 131-136
  • 99 Praticò AD, Pavone P, Scuderi MG. et al. Symptomatic hypocalcemia in an epileptic child treated with valproic acid plus lamotrigine: a case report. Cases J 2009; 2: 7394
  • 100 Pratico AD, Longo L, Mansueto S. et al. Off-label use of drugs and adverse drug reactions in pediatric units: a prospective, multicenter study. Curr Drug Saf 2018; 13 (03) 200-207
  • 101 Ruggieri M, Rizzo R, Pavone P, Baieli S, Sorge G, Happle R. Temporal triangular alopecia in association with mental retardation and epilepsy in a mother and daughter. Arch Dermatol 2000; 136 (03) 426-427
  • 102 Ruggieri M, Iannetti P, Clementi M. et al. Neurofibromatosis type 1 and infantile spasms. Childs Nerv Syst 2009; 25 (02) 211-216
  • 103 Amin S, Majumdar A, Mallick AA. et al. Caregiver's perception of epilepsy treatment, quality of life and comorbidities in an international cohort of CDKL5 patients. Hippokratia 2017; 21 (03) 130-135
  • 104 Falsaperla R, D'Angelo G, Praticò AD. et al. Ketogenic diet for infants with epilepsy: A literature review. Epilepsy Behav 2020; 112: 107361
  • 105 Krajnc N, Župančič N, Oražem J. Epilepsy treatment in Rett syndrome. J Child Neurol 2011; 26 (11) 1429-1433
  • 106 Lim Z, Wong K, Downs J, Bebbington K, Demarest S, Leonard H. Vagus nerve stimulation for the treatment of refractory epilepsy in the CDKL5 Deficiency Disorder. Epilepsy Res 2018; 146: 36-40
  • 107 Devinsky O, Verducci C, Thiele EA. et al. Open-label use of highly purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav 2018; 86: 131-137
  • 108 Tramarin M, Rusconi L, Pizzamiglio L. et al. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5. Hum Mol Genet 2018; 27 (12) 2052-2063
  • 109 Polizzi A, Pavone P, Ciancio E, La Rosa C, Sorge G, Ruggieri M. Hypertrichosis cubiti (hairy elbow syndrome): a clue to a malformation syndrome. J Pediatr Endocrinol Metab 2005; 18 (10) 1019-1025
  • 110 Polizzi A, Pavone P, Parano E, Incorpora G, Ruggieri M. Lack of progression of brain atrophy in Aicardi-Goutières syndrome. Pediatr Neurol 2001; 24 (04) 300-302
  • 111 Polizzi A, Coghill S, McShane MA, Squier W. Acute ataxia complicating Langherans cell histiocytosis. Arch Dis Child 2002; 86 (02) 130-131