Neuropediatrics 2021; 52(04): 252-260
DOI: 10.1055/s-0041-1730937
Review Article

Imaging in X-Linked Adrenoleukodystrophy

Stephanie I.W. van de Stadt
1   Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
,
Irene C. Huffnagel
1   Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
,
Bela R. Turk
2   Departments of Neurology and Pediatrics, Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, United States
,
Marjo S. van der Knaap
1   Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
,
Marc Engelen
1   Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
› Author Affiliations

Abstract

Magnetic resonance imaging (MRI) is the gold standard for the detection of cerebral lesions in X-linked adrenoleukodystrophy (ALD). ALD is one of the most common peroxisomal disorders and is characterized by a defect in degradation of very long chain fatty acids (VLCFA), resulting in accumulation of VLCFA in plasma and tissues. The clinical spectrum of ALD is wide and includes adrenocortical insufficiency, a slowly progressive myelopathy in adulthood, and cerebral demyelination in a subset of male patients. Cerebral demyelination (cerebral ALD) can be treated with hematopoietic cell transplantation (HCT) but only in an early (pre- or early symptomatic) stage and therefore active MRI surveillance is recommended for male patients, both pediatric and adult. Although structural MRI of the brain can detect the presence and extent of cerebral lesions, it does not predict if and when cerebral demyelination will occur. There is a great need for imaging techniques that predict onset of cerebral ALD before lesions appear. Also, imaging markers for severity of myelopathy as surrogate outcome measure in clinical trials would facilitate drug development. New quantitative MRI techniques are promising in that respect. This review focuses on structural and quantitative imaging techniques—including magnetic resonance spectroscopy, diffusion tensor imaging, MR perfusion imaging, magnetization transfer (MT) imaging, neurite orientation dispersion and density imaging (NODDI), and myelin water fraction imaging—used in ALD and their role in clinical practice and research opportunities for the future.



Publication History

Received: 15 October 2020

Accepted: 05 April 2021

Article published online:
30 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 de Beer M, Engelen M, van Geel BM. Frequent occurrence of cerebral demyelination in adrenomyeloneuropathy. Neurology 2014; 83 (24) 2227-2231
  • 2 Pierpont EI, Eisengart JB, Shanley R. et al. Neurocognitive trajectory of boys who received a hematopoietic stem cell transplant at an early stage of childhood cerebral adrenoleukodystrophy. JAMA Neurol 2017; 74 (06) 710-717
  • 3 Moser AB, Jones RO, Hubbard WC. et al. Newborn Screening for X-linked adrenoleukodystrophy. Int J Neonatal Screen 2016; 2 (04) 15
  • 4 Kemp S, Huffnagel IC, Linthorst GE, Wanders RJA, Engelen M. Adrenoleukodystrophy—neuroendocrine pathogenesis and redefinition of natural history. Nat Rev Endocrinol 2016; 12 (10) 606-615
  • 5 Singh I, Moser AE, Moser HW, Kishimoto Y. Adrenoleukodystrophy: impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr Res 1984; 18 (03) 286-290
  • 6 Berger J, Forss-Petter S, Eichler FS. Pathophysiology of X-linked adrenoleukodystrophy. Biochimie 2014; 98 (01) 135-142
  • 7 Dubey P, Raymond GV, Moser AB, Kharkar S, Bezman L, Moser HW. Adrenal insufficiency in asymptomatic adrenoleukodystrophy patients identified by very long-chain fatty acid screening. J Pediatr 2005; 146 (04) 528-532
  • 8 Bezman L, Moser HW. Incidence of X-linked adrenoleukodystrophy and the relative frequency of its phenotypes. Am J Med Genet 1998; 76: 415-419
  • 9 van Geel BM, Bezman L, Loes DJ, Moser HW, Raymond GV. Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol 2001; 49 (02) 186-194
  • 10 Miller WP, Rothman SM, Nascene D. et al. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: the largest single-institution cohort report. Blood 2011; 118 (07) 1971-1978
  • 11 Moser HW, Loes DJ, Melhem ER. et al. X-linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics 2000; 31 (05) 227-239
  • 12 Engelen M, Kemp S, de Visser M. et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 2012; 7 (51) 51
  • 13 Powers JM, DeCiero DP, Ito M, Moser AB, Moser HW. Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 2000; 59 (02) 89-102
  • 14 Powers JM, DeCiero DP, Cox C. et al. The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol Exp Neurol 2001; 60 (05) 493-501
  • 15 Huffnagel IC, van Ballegoij WJC, van Geel BM, Vos JMBW, Kemp S, Engelen M. Progression of myelopathy in males with adrenoleukodystrophy: towards clinical trial readiness. Brain 2019; 142 (02) 334-343
  • 16 van Geel BM, Poll-The BT, Verrips A, Boelens JJ, Kemp S, Engelen M. Hematopoietic cell transplantation does not prevent myelopathy in X-linked adrenoleukodystrophy: a retrospective study. J Inherit Metab Dis 2015; 38 (02) 359-361
  • 17 Huffnagel IC, Laheji FK, Aziz-Bose R. et al. The natural history of adrenal insufficiency in X-linked adrenoleukodystrophy: an international collaboration. J Clin Endocrinol Metab 2019; 104 (01) 118-126
  • 18 Huffnagel IC, Dijkgraaf MGW, Janssens GE. et al. Disease progression in women with X-linked adrenoleukodystrophy is slow. Orphanet J Rare Dis 2019; 14 (01) 30
  • 19 Jung HH, Wimplinger I, Jung S, Landau K, Gal A, Heppner FL. Phenotypes of female adrenoleukodystrophy. Neurology 2007; 68 (12) 960-961
  • 20 Duda EE, Huttenlocher PR. Computed tomography in adrenoleukodystrophy. Correlation of radiological and histological findings. Radiology 1976; 120 (02) 349-350
  • 21 Kumar AJ, Rosenbaum AE, Naidu S. et al. Adrenoleukodystrophy: correlating MR imaging with CT. Radiology 1987; 165 (02) 497-504
  • 22 van der Knaap MS, Valk J, de Neeling N, Nauta JJP. Pattern recognition in magnetic resonance imaging of white matter disorders in children and young adults. Neuroradiology 1991; 33 (06) 478-493
  • 23 Loes DJ, Hite S, Moser H. et al. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol 1994; 15 (09) 1761-1766
  • 24 Engelen M, Kemp S, Poll-The BT. X-linked adrenoleukodystrophy: pathogenesis and treatment. Curr Neurol Neurosci Rep 2014; 14 (10) 486
  • 25 Schaumburg HH, Powers JM, Raine CS, Suzuki K, Richardson Jr EP. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch Neurol 1975; 32 (09) 577-591
  • 26 van der Voorn JP, Pouwels PJW, Powers JM. et al. Correlating quantitative MR imaging with histopathology in X-linked adrenoleukodystrophy. AJNR Am J Neuroradiol 2011; 32 (03) 481-489
  • 27 Powers JM, Liu Y, Moser AB, Moser HW. The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol Exp Neurol 1992; 51 (06) 630-643
  • 28 Melhem ER, Breiter SN, Ulug AM, Raymond GV, Moser HW. Improved tissue characterization in adrenoleukodystrophy using magnetization transfer imaging. Am J Roentgenol 1996; 166: 689-695
  • 29 Valk J, van der Knaap MS. Magnetic Resonance of Myelin, Myelination and Myelin Disorders. Springer, Berlin, Heidelberg: Society of Nuclear Medicine; 1989
  • 30 Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72 (08) 750-759
  • 31 Melhem ER, Loes DJ, Georgiades CS, Raymond GV, Moser HW. X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. AJNR Am J Neuroradiol 2000; 21 (05) 839-844
  • 32 Kim JH, Kim HJ. Childhood X-linked adrenoleukodystrophy: clinical-pathologic overview and MR imaging manifestations at initial evaluation and follow-up. Radiographics 2005; 25 (03) 619-631
  • 33 Loes DJ, Fatemi A, Melhem ER. et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 2003; 61 (03) 369-374
  • 34 Fatemi A, Barker PB, Uluğ AM. et al. MRI and proton MRSI in women heterozygous for X-linked adrenoleukodystrophy. Neurology 2003; 60 (08) 1301-1307
  • 35 Liberato AP, Mallack EJ, Aziz-Bose R. et al. MRI brain lesions in asymptomatic boys with X-linked adrenoleukodystrophy. Neurology 2019; 92 (15) e1698-e1708
  • 36 Eichler F, Mahmood A, Loes D. et al. Magnetic resonance imaging detection of lesion progression in adult patients with X-linked adrenoleukodystrophy. Arch Neurol 2007; 64 (05) 659-664
  • 37 Mallack EJ, van de Stadt S, Caruso PA. et al. Clinical and radiographic course of arrested cerebral adrenoleukodystrophy. Neurology 2020; 94 (24) e2499-e2507
  • 38 Mallack EJ, Turk BR, Yan H. et al. MRI surveillance of boys with X-linked adrenoleukodystrophy identified by newborn screening: meta-analysis and consensus guidelines. J Inherit Metab Dis 2020; 2020: 1-12
  • 39 McDonald RJ, Levine D, Weinreb J. et al. Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 2018; 289 (02) 517-534
  • 40 Uysal E, Erturk SM, Yildirim H, Seleker F, Basak M. Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. AJR Am J Roentgenol 2007; 188 (03) 697-702
  • 41 Kumar AJ, Köhler W, Kruse B. et al. MR findings in adult-onset adrenoleukodystrophy. AJNR Am J Neuroradiol 1995; 16 (06) 1227-1237
  • 42 Israel H, Ostendorf F, Stiepani H, Ploner CJ. Spinal cord atrophy in adrenomyeloneuropathy. Arch Neurol 2005; 62 (07) 1157
  • 43 Castellano A, Papinutto N, Cadioli M. et al. Quantitative MRI of the spinal cord and brain in adrenomyeloneuropathy: in vivo assessment of structural changes. Brain 2016; 139 (Pt 6): 1735-1746
  • 44 van de Stadt SIW, van Ballegoij WJC, Labounek R. et al. Spinal cord atrophy as a measure of severity of myelopathy in adrenoleukodystrophy. J Inherit Metab Dis 2020; 43 (04) 852-860
  • 45 Rajanayagam V, Grad J, Krivit W. et al. Proton MR spectroscopy of childhood adrenoleukodystrophy. AJNR Am J Neuroradiol 1996; 17 (06) 1013-1024
  • 46 Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics 1998; 29 (05) 254-264
  • 47 Ratai E, Kok T, Wiggins C. et al. Seven-Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy. Arch Neurol 2008; 65 (11) 1488-1494
  • 48 van der Voorn JP, Pouwels PJW, Hart AAM. et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology 2006; 241 (02) 510-517
  • 49 Dubey P, Fatemi A, Barker PB. et al. Spectroscopic evidence of cerebral axonopathy in patients with “pure” adrenomyeloneuropathy. Neurology 2005; 64 (02) 304-310
  • 50 Eichler FS, Itoh R, Barker PB. et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 2002; 225 (01) 245-252
  • 51 Eichler FS, Barker PB, Cox C. et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology 2002; 58 (06) 901-907
  • 52 Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201 (03) 637-648
  • 53 Ito R, Melhem ER, Mori S, Eichler FS, Raymond GV, Moser HW. Diffusion tensor brain MR imaging in X-linked cerebral adrenoleukodystrophy. Neurology 2001; 56 (04) 544-547
  • 54 Huffnagel IC, van Ballegoij WJC, Vos JMBW, Kemp S, Caan MWA, Engelen M. Longitudinal diffusion MRI as surrogate outcome measure for myelopathy in adrenoleukodystrophy. Neurology 2019; 93 (23) e2133-e2143
  • 55 Dubey P, Fatemi A, Huang H. et al. Diffusion tensor-based imaging reveals occult abnormalities in adrenomyeloneuropathy. Ann Neurol 2005; 58 (05) 758-766
  • 56 Song S-K, Yoshino J, Le TQ. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 2005; 26 (01) 132-140
  • 57 McGehee BE, Pollock JM, Maldjian JA. Brain perfusion imaging: how does it work and what should I use?. J Magn Reson Imaging 2012; 36 (06) 1257-1272
  • 58 Musolino PL, Rapalino O, Caruso P, Caviness VS, Eichler FS. Hypoperfusion predicts lesion progression in cerebral X-linked adrenoleukodystrophy. Brain 2012; 135 (Pt 9): 2676-2683
  • 59 Lauer A, Da X, Hansen MB. et al. ABCD1 dysfunction alters white matter microvascular perfusion. Brain 2017; 140 (12) 3139-3152
  • 60 Essig M, Shiroishi MS, Nguyen TB. et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2013; 200 (01) 24-34
  • 61 Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed 2001; 14 (02) 57-64
  • 62 Smith SA, Golay X, Fatemi A. et al. Quantitative magnetization transfer characteristics of the human cervical spinal cord in vivo: application to adrenomyeloneuropathy. Magn Reson Med 2009; 61 (01) 22-27
  • 63 Fatemi A, Smith SA, Dubey P. et al. Magnetization transfer MRI demonstrates spinal cord abnormalities in adrenomyeloneuropathy. Neurology 2005; 64 (10) 1739-1745
  • 64 Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012; 61 (04) 1000-1016
  • 65 Merluzzi AP, Dean III DC, Adluru N. et al. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging. Neurobiol Aging 2016; 43: 79-88
  • 66 Nazeri A, Chakravarty MM, Rotenberg DJ. et al. Functional consequences of neurite orientation dispersion and density in humans across the adult lifespan. J Neurosci 2015; 35 (04) 1753-1762
  • 67 Broad RJ, Gabel MC, Dowell NG. et al. Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS. J Neurol Neurosurg Psychiatry 2019; 90 (04) 404-411
  • 68 Kamagata K, Hatano T, Okuzumi A. et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol 2016; 26 (08) 2567-2577
  • 69 Colgan N, Siow B, O'Callaghan JM. et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease. Neuroimage 2016; 125: 739-744
  • 70 By S, Xu J, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. Neuroimage Clin 2017; 15: 333-342
  • 71 MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B. Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 2006; 24 (04) 515-525
  • 72 MacKay AL, Laule C. Magnetic resonance of myelin water: An in vivo marker for myelin. Brain Plast 2016; 2 (01) 71-91
  • 73 Faizy TD, Kumar D, Broocks G. et al. Age-related measurements of the myelin water fraction derived from 3D multi-echo GRASE reflect myelin content of the cerebral white matter. Sci Rep 2018; 8 (01) 14991
  • 74 Faizy TD, Thaler C, Broocks G. et al. The myelin water fraction serves as a marker for age-related myelin alterations in the cerebral white matter—a multiparametric MRI aging study. Front Neurosci 2020; 14: 136