Synthesis 2023; 55(10): 1487-1496
DOI: 10.1055/s-0042-1751420
short review

Carbonyl Allylation and Crotylation: Historical Perspective, Relevance to Polyketide Synthesis, and Evolution of Enantioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer Processes

Eliezer Ortiz
,
Connor Saludares
,
Jessica Wu
,
Yoon Cho
,
Catherine G. Santana
,
Michael J. Krische
The Robert A. Welch Foundation (F-0038) and the NIH-NIGMS (RO1-GM069445) are acknowledged for partial support of this research.


Abstract

The evolution of methods for carbonyl allylation and crotylation of alcohol proelectrophiles culminating in the design of iodide-bound ruthenium-JOSIPHOS catalysts is prefaced by a brief historical perspective on asymmetric carbonyl allylation and its relevance to polyketide construction. Using gaseous allene or butadiene as precursors to allyl- or crotylruthenium nucleophiles, respectively, new capabilities for carbonyl allylation and crotylation have been unlocked, including stereo- and site-selective methods for the allylation and crotylation of 1,3-diols and related polyols.

1 Introduction and Historical Perspective

2 Ruthenium-Catalyzed Conversion of Lower Alcohols into Higher Alcohols

3 Conclusion and Future Outlook



Publication History

Received: 16 December 2022

Accepted after revision: 16 January 2023

Article published online:
20 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Saytzeff M, Saytzeff A, Sorokin B. Ber. Dtsch. Chem. Ges. 1876; 9: 33
    • 1b Kanonnikoff J, Saytzeff A. Justus Liebigs Ann. Chem. 1877; 185: 148
    • 1c Saytzeff M, Saytzeff A. Justus Liebigs Ann. Chem. 1877; 185: 151
    • 1d Béhal A, Sommelet M. C. R. Hebd. Seances Acad. Sci. 1904; 138: 89
    • 1e Mikhailov BM, Bubnov YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1964; 1874
    • 1f König K, Neumann WP. Tetrahedron Lett. 1967; 8: 493
    • 1g Hosomi A, Sakurai H. Tetrahedron Lett. 1976; 17: 1295
    • 1h Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179

      For selected examples of chiral reagents for asymmetric carbonyl allylmetalation, see:
    • 2a Herold T, Hoffmann RW. Angew. Chem. Int. Ed. Engl. 1978; 17: 768
    • 2b Hoffmann RW, Herold T. Chem. Ber. 1981; 114: 375
    • 2c Brown HC, Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
    • 2d Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
    • 2e Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
    • 2f Roush WR, Walts AE, Hoong LK. J. Am. Chem. Soc. 1985; 107: 8186
    • 2g Roush WR, Halterman RL. J. Am. Chem. Soc. 1986; 108: 294
    • 2h Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
    • 2i Seebach D, Beck AK, Imwinkelzied R, Roggo S, Wonnacott A. Helv. Chim. Acta 1987; 70: 954
    • 2j Riediker M, Duthaler RO. Angew. Chem. Int. Ed. Engl. 1989; 28: 494
    • 2k Garcia J, Kim BM, Masamune S. J. Org. Chem. 1987; 52: 4831
    • 2l Short RP, Masamune S. J. Am. Chem. Soc. 1989; 111: 1892
    • 2m Reetz M. Pure Appl. Chem. 1988; 60: 1607
    • 2n Corey EJ, Yu C.-M, Kim SS. J. Am. Chem. Soc. 1989; 111: 5495
    • 2o Kinnaird JW. A, Ng PY, Kubota K, Wang X, Leighton JL. J. Am. Chem. Soc. 2002; 124: 7920
    • 2p Hackman BM, Lombardi PJ, Leighton JL. Org. Lett. 2004; 6: 4375
    • 3a Furuta K, Mouri M, Yamamoto H. Synlett 1991; 561
    • 3b Costa AL, Piazza MG, Tagliavini E, Trombini C, Umani-Ronchi A. J. Am. Chem. Soc. 1993; 115: 7001
    • 3c Keck GE, Tarbet KH, Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
    • 3d Denmark SE, Coe DM, Pratt NE, Griedel BD. J. Org. Chem. 1994; 59: 6161
    • 3e Denmark SE, Fu J. J. Am. Chem. Soc. 2001; 123: 9488
    • 3f Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 1999; 38: 3357
    • 3g Bandini M, Cozzi PG, Umani-Ronchi A. Angew. Chem. Int. Ed. 2000; 39: 2327
    • 3h Majdecki M, Niedbała P, Jurczak J. ChemistrySelect 2020; 5: 6424
    • 3i Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
    • 3j Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995

      For selected reviews on polyketide total synthesis, see:
    • 5a Koskinen AM. P, Karisalmi K. Chem. Soc. Rev. 2005; 34: 677
    • 5b Dechert-Schmitt A.-MR, Schmitt DC, Gao X, Itoh T, Krische MJ. Nat. Prod. Rep. 2014; 31: 504
    • 5c Feng J, Kasun ZA, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5467
    • 5d Liu H, Lin S, Jacobsen KM, Poulsen TB. Angew. Chem. Int. Ed. 2019; 58: 13630
    • 5e Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
    • 5f Friedrich RM, Friestad GK. Nat. Prod. Rep. 2020; 37: 1229
    • 5g Sperandio C, Rodriguez J, Quintard A. Org. Biomol. Chem. 2020; 18: 1025
    • 5h He Y, Song H, Chen J, Zhu S. Nat. Commun. 2021; 12: 638
    • 5i Knochel P, Kremsmair A. Synfacts 2021; 17: 0405

      For selected reviews on polyketide natural products in pharmaceutical and agrochemical research, see:
    • 6a Rohr J. Angew. Chem. Int. Ed. 2000; 39: 2847
    • 6b Newman DJ, Cragg GM. J. Nat. Prod. 2007; 70: 461
    • 6c Cragg GM, Grothaus PG, Newman DJ. Chem. Rev. 2009; 109: 3012
    • 6d Dayan FE, Cantrell CL, Duke SO. Bioorg. Med. Chem. 2009; 17: 4022
    • 6e Katz L, Baltz RH. J. Ind. Microbiol. Biotechnol. 2016; 43: 155
    • 6f Beutler JA. Curr. Protoc. Pharmacol. 2019; 86: 1
    • 6g Ray P, Lakshmanan V, Labbé JL, Craven KD. Front. Microbiol. 2020; 11: 622926
  • 7 For literature pertaining to the isolation and total synthesis of roxaticin, see: Han SB, Hassan A, Kim I.-S, Krische MJ. J. Am. Chem. Soc. 2010; 132: 15559
  • 8 For literature pertaining to the history and synthesis of erythromycin family natural products, see: Gao X, Woo SK, Krische MJ. J. Am. Chem. Soc. 2013; 135: 4223
  • 9 For a brief historical perspective on the aldol reaction, see: Meyer CC, Ortiz E, Krische MJ. Chem. Rev. 2020; 120: 3721
  • 10 The manufacturing route to eribulin comprises 65 steps, of which half are redox reactions and protecting group manipulations. For a review, see: Yu MJ, Zheng W, Seletsky BM. Nat. Prod. Rep. 2013; 30: 1158

    • With the exception of eribulin, all polyketides used in human medicine derive from soil bacteria, yet <5% of soil bacteria are amenable to culture with many phyla having eluded culture and the few bacteria amenable to culture express <10% of their biosynthetic genes:
    • 11a Sait M, Hugenholtz P, Janssen PH. Environ. Microbiol. 2002; 4: 654
    • 11b Doroghazi JR, Albright JC, Goering AW, Ju K.-S, Haines RH, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW. Nat. Chem. Biol. 2014; 10: 963
    • 12a Locey KJ, Lennon JT. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 5970
    • 12b Stolz JF. FEMS Microbiol. Ecol. 2017; 93: 1
    • 12c Escudeiro P, Henry CS, Dias RP. M. Curr. Res. Microb. Sci. 2022; 3: 100159

      Lower estimates of microbial diversity appear to undercount bacterial species associated with higher organisms:
    • 13a Louca S, Mazel F, Doebeli M, Parfrey LW. PLoS Biol. 2019; 17: e3000106
    • 13b Wiens JJ. PLoS Biol. 2021; 19: e3001192

      Although saturated, stereochemically rich small molecules (like polyketides) have a higher success rate than related sp2-rich small-molecule clinical candidates, new synthetic methods to prepare compounds of this type are underutilized by medicinal chemists:
    • 14a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 14b Lovering F. Med. Chem. Commun. 2013; 4: 515
    • 14c Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385
    • 14d Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 14e Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709

      For selected reviews on enantioselective carbonyl addition, see:
    • 15a Noyori R, Kitamura M. Angew. Chem. Int. Ed. Engl. 1991; 30: 49
    • 15b Soai K, Shibata T. In Comprehensive Asymmetric Catalysis, Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999: 911
    • 15c Pu L, Yu H.-B. Chem. Rev. 2001; 101: 757
    • 15d Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
    • 15e Comprehensive Organic Synthesis, 2nd ed. Knochel P, Molander GA. Elsevier; Oxford: 2014

      For selected reviews on metal-catalyzed carbonyl reductive coupling, see:
    • 16a Krische MJ, Jang H.-Y. In Comprehensive Organometallic Chemistry III . Mingos M, Crabtree R. Elsevier; Oxford: 2006: 493
    • 16b Metal Catalyzed Reductive C–C Bond Formation. In Topics in Current Chemistry, Vol. 279. Krische MJ. Springer; Berlin: 2007
    • 16c Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: aah5133
    • 16d Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 16e Xiang M, Pfaffinger DE, Krische MJ. Chem. Eur. J. 2021; 27: 13107
    • 16f Ortiz E, Shezaf JZ, Chang Y.-H, Krische MJ. ACS Catal. 2022; 12: 8164

      For selected reviews on hydrogen auto-transfer for the conversion of lower alcohols to higher alcohols, see:
    • 17a Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
    • 17b Santana CG, Krische MJ. ACS Catal. 2021; 11: 5572
    • 17c Ortiz E, Shezaf JZ, Shen W, Krische MJ. Chem. Sci. 2022; 13: 12625

      For selected reviews on ‘borrowing hydrogen’ for hydroxyl substitution, see:
    • 18a Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
    • 18b Guillena G, Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2007; 46: 2358
    • 18c Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 18d Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. ChemCatChem 2011; 3: 1853
    • 18e Yang Q, Wang Q, Yu Z. Chem. Soc. Rev. 2015; 44: 2305
    • 18f Aitchison H, Wingad RL, Wass DF. ACS Catal. 2016; 6: 7125
    • 18g Quintard A, Rodriguez J. Chem. Commun. 2016; 52: 10456
    • 18h Reed-Berendt BG, Polidano K, Morrill LC. Org. Biomol. Chem. 2019; 17: 1595
    • 18i Kwok T, Hoff O, Armstrong RJ, Donohoe TJ. Chem. Eur. J. 2020; 26: 12912
    • 19a Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
    • 19b Bower JF, Patman RL, Krische MJ. Org. Lett. 2008; 10: 1033

      For enantioselective iridium-catalyzed carbonyl allylation and crotylation, see:
    • 20a Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6340
    • 20b Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
    • 20c Kim IS, Han SB, Krische MJ. J. Am. Chem. Soc. 2009; 131: 2514
    • 20d Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 5018
    • 20e Hassan A, Lu Y, Krische MJ. Org. Lett. 2009; 11: 3112
    • 20f Gao X, Townsend IA, Krische MJ. J. Org. Chem. 2011; 76: 2350
    • 20g Gao X, Han H, Krische MJ. J. Am. Chem. Soc. 2011; 133: 12795
    • 20h Schmitt DC, Dechert-Schmitt A.-MR, Krische MJ. Org. Lett. 2012; 14: 6302
    • 20i Dechert-Schmitt A.-MR, Schmitt DC, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 3195
    • 20j Shin I, Wang G, Krische MJ. Chem. Eur. J. 2014; 20: 13382
    • 21a Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6338
    • 21b Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14120

      For stoichiometric reactions of HXRu(CO)(PR3)3 (X = Cl, Br) with allenes or dienes to form discrete π-allylruthenium complexes, see:
    • 22a Hiraki K, Ochi N, Sasada Y, Hayashida H, Fuchita Y, Yamanaka S. J. Chem. Soc., Dalton Trans. 1985; 873
    • 22b Hill AF, Ho CT, Wilton-Ely JD. E. T. Chem. Commun. 1997; 2207
    • 22c Xue P, Bi S, Sung HH. Y, Williams ID, Lin Z, Jia G. Organometallics 2004; 23: 4735
  • 23 The acid-base reaction of H2Ru(CO)(PPh3)3 with CF3CO2H to form ruthenium trifluoroacetate complexes has been described: Dobson A, Robinson SR, Uttley MF. J. Chem. Soc., Dalton Trans. 1975; 370

    • Related crotylmagnesium and crotylzinc reagents bearing 2-trimethylsilyl groups react with aldehydes to give the syn-diastereomers:
    • 24a Sato F, Kusakabe M, Kobayashi Y. J. Chem. Soc., Chem. Commun. 1984; 1130
    • 24b Helm MD, Mayer P, Knochel P. Chem. Commun. 2008; 1916
    • 25a Zbieg JR, Moran J, Krische MJ. J. Am. Chem. Soc. 2011; 133: 10582
    • 25b Pantin M, Hubert JG, Söhnel T, Brimble MA, Furkert DP. J. Org. Chem. 2017; 82: 11225
    • 26a Del Valle DJ, Krische MJ. J. Am. Chem. Soc. 2013; 135: 10986
    • 26b Schempp TT, Krische MJ. J. Am. Chem. Soc. 2022; 144: 1016
    • 27a Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
    • 27b McInturff EL, Yamaguchi E, Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
  • 28 Grayson MN, Krische MJ, Houk KN. J. Am. Chem. Soc. 2015; 137: 8838

    • For selected studies of formyl CH hydrogen bonding, see:
    • 29a Corey EJ, Lee TW. Chem. Commun. 2001; 1321
    • 29b Thakur TS, Kirchner MT, Bläser D, Boese R, Desiraju GR. Phys. Chem. Chem. Phys. 2011; 13: 14076
  • 30 Yoo M, Krische MJ. Angew. Chem. Int. Ed. 2021; 60: 13923
    • 31a Liang T, Nguyen KD, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
    • 31b Liang T, Zhang W, Chen T.-Y, Nguyen KD, Krische MJ. J. Am. Chem. Soc. 2015; 137: 13066
    • 31c Xiang M, Ghosh A, Krische MJ. J. Am. Chem. Soc. 2021; 143: 2838
    • 31d Xiang M, Pfaffinger DE, Ortiz E, Brito GA, Krische MJ. J. Am. Chem. Soc. 2021; 143: 8849
  • 32 Ortiz E, Shezaf JZ, Chang Y.-H, Gonçalves TP, Huang K.-W, Krische MJ. J. Am. Chem. Soc. 2021; 143: 16709

    • For selected reviews on halide counterion effects in metal catalysis, see:
    • 33a Maitlis PM, Haynes A, James BR, Catellani M, Chiusoli GP. Dalton Trans. 2004; 3409
    • 33b Fagnou K, Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
  • 34 For a review on JOSIPHOS ligands, see: Blaser H.-U, Brieden W, Pugin B, Spindler F, Studer M, Tognai A. Top. Catal. 2002; 19: 3
    • 35a Ortiz E, Spinello BJ, Cho Y, Wu J, Krische MJ. Angew. Chem. Int. Ed. 2022; 61: e202212814
    • 35b Saludares C, Ortiz E, Santana CG, Spinello BJ, Krische MJ. ACS Catal. 2023; 13: 1662
  • 36 Liang X, Yoo M, Schempp T, Maejima S, Krische MJ. Angew. Chem. Int. Ed. 2022; 61: e202214786

    • Production data are taken from:
    • 37a Kirk-Othmer Encyclopedia of Chemical Technology [Online]; John Wiley & Sons (accessed Feb 8, 2023)

    • or
    • 37b Ullmann's Encyclopedia of Industrial Chemistry [Online]; Wiley-VCH (accessed Feb 8, 2023)
    • 38a Kim SW, Meyer CC, Mai BK, Liu P, Krische MJ. ACS Catal. 2019; 9: 9158
    • 38b Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251

      For selected reviews on enantioselective catalysis via chiral-at-metal complexes, see:
    • 39a Knight PD, Scott P. Coord. Chem. Rev. 2003; 242: 125
    • 39b Bauer EB. Chem. Soc. Rev. 2012; 41: 3153
    • 39c Gong L, Chen L.-A, Meggers E. Angew. Chem. Int. Ed. 2014; 53: 10868

      For other enantioselective ruthenium-catalyzed carbonyl additions via hydrogen auto-transfer that are relevant to polyketide construction, see:
    • 40a Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5238
    • 40b Ortiz E, Chang Y.-H, Shezaf JZ, Shen W, Krische MJ. J. Am. Chem. Soc. 2022; 144: 8861