Laryngorhinootologie 2017; 96(11): 780-786
DOI: 10.1055/s-0043-119292
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Lautheitsoptimierte Messung von Summenaktionspotentialen bei Cochlea Implantat Trägern

Loudness optimized registration of compound action potential in cochlear implant recipients
Klaus Berger
1   CIC Berlin-Brandenburg Audiologie
,
Thomas Hocke
2   Cochlear Dtl. GmbH & Co. KG, Research
,
Horst Hessel
2   Cochlear Dtl. GmbH & Co. KG, Research
› Author Affiliations
Further Information

Publication History

02/23/2017

06/13/2017

Publication Date:
22 September 2017 (online)

Zusammenfassung

Hintergrund Die postoperative Messung von Summenaktionspotentialen ist aufgrund mangelnder Akzeptanz durch die CI-Träger nicht immer möglich. In dieser Arbeit wurde untersucht, ob durch veränderte Messparameter eine höhere Akzeptanz der Messung erreicht werden kann.

Methodik Es wurden Summenaktionspotentiale an 16 CI-Trägern bei verschiedenen Pulsbreiten gemessen. An der Potentialschwelle wurde eine Lautheitsbewertung der bei der Messung verwendeten Sequenzen durchgeführt.

Ergebnisse Die Registrierung der Summenaktionspotentiale wird bei höheren Pulsbreiten von den CI-Trägern leiser empfunden.

Schlussfolgerung Bei mit höheren Pulsbreiten gemessenen Summenaktionspotentialen findet sich ein zunehmender Abstand zwischen maximal akzeptierter Stimulusintensität und Potentialschwelle. Dieser trägt zur höheren Akzeptanz postoperativer Messungen bei.

Abstract

Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements.

Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences.

Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths.

Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements.

 
  • Literatur

  • 1 Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V. Cochlea-Implantat Versorgung einschließlich zentral-auditorischer Implantate. AWMF online 2012 http://www.awmf.org/leitlinien/detail/ll/017-071.html download am 14.06.2016
  • 2 Krüger B, Joseph G, Rost A. et al. Performance groups in adult cochlear implant users: Speech perception results from 1984 until today. Otol Neurotol 2008; 29: 509-512
  • 3 Patrick JF, Busby PA, Gibson PJ. The development of the Nucleus Freedom Cochlear implant system. Trends Amplif 2006; 10: 175-200
  • 4 Clark GM. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hear Res 2015; 322: 4-13
  • 5 Blamey PJ, Artieres F, Baskent D. et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiol Neurotol 2013; 18: 36-47
  • 6 Holden LK, Finley CC, Firszt JB. et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear 2013; 34: 342-60
  • 7 Hoppe U, Hocke T, Hast A. et al. Langzeitergebnisse eines Screeningverfahrens für erwachsene Cochlea-Implantat-Kandidaten. Laryngo Rhino Otol 2017; 96: 234-238
  • 8 Abbas PJ, Brown CJ, Shallop JK. et al. Summary of results using the nucleus CI24 M implant to record the electrically evoked compound action potential. Ear Hear 1999; 20: 45-59
  • 9 Battmer RD, Dillier N, Lai WK. et al. Evaluation of the neural response telemetry (NRT) capabilities of the nucleus research platform 8: initial results from the NRT trial. Int J of Audiol 2004; 43 (Suppl. 01) 10-15
  • 10 van Dijk B, Botros A, Battmer RD. et al. Clinical results of AutoNRTTM , a completely automatic ECAP recording system for cochlear implants. Ear Hear 2007; 28: 558-570
  • 11 Botros A, Psarros C. Neural reponse telemetry reconsidered: I. the relevance of ecap thershold profiles and scaled profiled to cochlear implant fitting. Ear Hear 2010; 31: 367-379
  • 12 Botros A, Banna R, Maruthurkkara S. The next generation of Nucleus fitting: A multiplatform approach towards universal cochlear implant management. Int J Audiol 2013; 52: 485-494
  • 13 van der Beek FB, Briaire JJ, Frijns JHM. Effects of parameter manipulations on spread of excitation measured with electrically-evoked compound action potentials. Int J Audiol 2012; 51: 465-474
  • 14 Botros A, Psarros C. Neural response telemetry reconsidered: II. the influence of neural population on the ecap recovery function and refractoriness. Ear Hear 2010; 31: 380-391
  • 15 Botros A, van Dijk B, Killian M. Auto-NRT: An automated system that measures ECAP thresholds with the nucleus® freedom cochlear implant via machine intelligence. Artif Intell Med 2007; 40: 15-28
  • 16 Gartner L, Lenarz T, Joseph G. et al. Clinical use of a system for the automated recording and analysis of electrically evoked compound action potentials (ecaps) in cochlear implant patients. Acta Oto-Laryngol 2010; 130: 724-732
  • 17 Dziemba OC, Mir-Salim P, Müller A. Vergleichswerte elektrophysiologischer Messungen zur intraoperativen Lagekontrolle bei verschiedenen CI-Elektrodenträgern. Z Audiol 2016; 55: 50-56
  • 18 Lai WK, Aksit M, Akdas F. et al. Longitudinal behaviour of neural response telemetry (NRT) data and clinical implications. Int J Audiol 2004; 43: 252-63
  • 19 Müller A, Hocke T, Mir-Salim P. Intraoperative findings on ECAP-measurement: Normal or special case?. Int J Audiol 2015; 54: 257-264
  • 20 Müller A, Feick J, Dziemba O. et al. Objektive Diagnostik und Therapie einer Hörverschlechterung mehrere Jahre nach Cochlea Implantation. Laryngo Rhino Otol 2016; 95: 634-635
  • 21 Miller CA, Abbas PJ, Brown CJ. An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear Hear 2000; 21: 280-90
  • 22 Ramekers D, Versnel H, Strahl SB. et al. Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration. J Assoc Res Otolaryngol 2014; 15: 39-45
  • 23 Schvartz-Leyzac KC, Pfingst BE. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Hear Res 2016; 341: 50-65
  • 24 Hey M, Müller-Deile J. Accuracy of measurement in electrically evoked compound action potentials. J Neurosci Meth 2015; 239: 214-22
  • 25 Smoorenburg GF, Willeboer C, van Dijk JE. Speech perception in nucleus CI24 M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurotol 2002; 7: 335-47
  • 26 Lai WK, Dillier N, Weber BP. et al. TNRT profiles with the nucleus research platform 8 system. Int J Audiol 2009; 48: 645-54
  • 27 Basta D, Todt I, Ernst A. Audiological outcome of the pull-back technique in cochlear implantees. Laryngoscope 2010; 120: 1391-1396
  • 28 Gordon KA, Papsin BC, Harrison RV. et al. Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear 2004; 25: 447-463
  • 29 Bewley MS. Mining clinical databases: A post-hoc study of cochlear implant fitting practices. Cochlear White Paper. 2013
  • 30 Macherey O, Cazals Y. Effects of Pulse Shape and Polarity on Sensitivity to Cochlear Implant Stimulation: A Chronic Study in Guinea Pigs. Adv Exp Med Biol 2016; 894: 133-42