Die Wirbelsäule 2018; 02(02): 119-128
DOI: 10.1055/s-0043-121993
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle von Kortikosteroiden bei Traumata des Myelons und der peripheren Nerven – Pathophysiologie und experimentelle Ergebnisse

The role of corticosteroids in acute spinal cord- and peripheral nerve injury – pathophysiology an experimental results
Christian Andreas Müller
Neurochirurgische Klinik, Uniklinik der RWTH Aachen
› Author Affiliations
Further Information

Publication History

Publication Date:
17 April 2018 (online)

Zusammenfassung

Traumatische Verletzungen des Rückenmarkes und peripherer Nerven sind medizinisch komplexe Zustände, die das gesamte Leben verändern. Der pathophysiologische und molekularpathologische Erkenntnisgewinn über Schädigungsmechanismen nach einer Rückenmarkverletzung (SCI) und einer peripheren Nervenverletzung (PNI) haben zu neuen Therapieansätzen geführt. Es konnten bereits ermutigende tierexperimentelle Ergebnisse mit dem Einsatz unterschiedlicher Kortikosteroide gezeigt werden. Diese Übersichtsarbeit soll über die pathophysiologischen Grundlagen der SCI und PNI informieren und die Rolle von Kortikosteroiden, als mögliches beeinflussendes Agens, im Rahmen der Krankheitsbilder beleuchten.

Abstract

Traumatic spinal cord injuries (SCI) and peripheral nerve injuries (PNI) are medically complex situations that change the whole life. The pathophysiological and molecular pathological amount of new knowledge about injury mechanisms after SCI and PNI have led to new therapeutic approaches. Encouraging animal experiments could be already demonstrating the beneficial use of different corticosteroids. This review is intended to provide information on the pathophysiological basis of SCI and PNI, as well as the role of corticosteroids as a possible influencing agent in the context of the disease patterns.

Fazit

Der pathophysiologische und molekularpathologische Erkenntnisgewinn über Schädigungsmechanismen nach SCI und PNI sowie die Identifikation inhibitorischer und trophischer Faktoren haben zu neuen Therapieansätzen geführt. Die durchaus ermutigenden tierexperimentellen Ergebnisse einer peritraumatischen MPSS-Therapie können allerdings nur einen Beitrag leisten hinsichtlich der Therapie einer SCI und PNI. Zurzeit scheint es so, dass die Kombination unterschiedlicher, komplementärer Therapiestrategien die Grundlage für synergistisch wirksame zukünftige Therapien bildet.

 
  • Literatur

  • 1 Bracken MB. Steroids for acute spinal cord injury. Cochrane Database Syst Rev 2012; 1 DOI: 10.1002/14651858.CD001046.pub2. CD001046
  • 2 Jain NB, Ayers GD, Peterson EN. et al. Traumatic spinal cord injury in the United States, 1993-2012. Jama 2015; 313: 2236-2243
  • 3 World Health Organization. Querschnittlähmung – Internationale Perspektiven. Schweizer Paraplegiker-Forschung (SPF) Nottwil; 2014
  • 4 Taylor CA, Braza D, Rice JB. et al. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil 2008; 87: 381-385
  • 5 Eser F, Aktekin LA, Bodur H. et al. Etiological factors of traumatic peripheral nerve injuries. Neurol India 2009; 57: 434-437
  • 6 Lad SP, Nathan JK, Schubert RD. et al. Trends in median, ulnar, radial, and brachioplexus nerve injuries in the United States. Neurosurgery 2010; 66: 953-960
  • 7 Uzun N, Tanriverdi T, Savrun FK. et al. Traumatic peripheral nerve injuries: demographic and electrophysiologic findings of 802 patients from a developing country. J Clin Neuromuscul Dis 2006; 7: 97-103
  • 8 Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 2001; 26: S2-12
  • 9 Witiw CD, Fehlings MG. Acute Spinal Cord Injury. J Spinal Disord Tech 2015; 28: 202-210
  • 10 Schwab JM, Brechtel K, Mueller CA. et al. Experimental strategies to promote spinal cord regeneration--an integrative perspective. Prog Neurobiol 2006; 78: 91-116
  • 11 Ahuja CS, Wilson JR, Nori S. et al. Traumatic spinal cord injury. Nat Rev Dis Primers 2017; 3: 17018
  • 12 Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin 2013; 29: 317-330
  • 13 Sunderland S. The function of nerve fibers whose structure has been disorganized. Anat Rec 1951; 109: 503-513
  • 14 Seddon HJ. Three types of nerve injury. Brain 1943; 66: 237-288
  • 15 Feng X, Yuan W. Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. Biomed Res Int 2015; 2015: 627923
  • 16 Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 2004; 16: E1
  • 17 Burns CM. The History of Cortisone Discovery and Development. Rheum Dis Clin North Am 2016; 42: 1-14, vii
  • 18 Straub RH, Cutolo M. Glucocorticoids and chronic inflammation. Rheumatology (Oxford) 2016; 55: ii6-ii14
  • 19 Johannsson G, Filipsson H, Bergthorsdottir R. et al. Long-acting hydrocortisone for glucocorticoid replacement therapy. Horm Res 2007; 68 (Suppl. 05) 182-188
  • 20 Yoon DH, Kim YS, Young W. Therapeutic time window for methylprednisolone in spinal cord injured rat. Yonsei Med J 1999; 40: 313-320
  • 21 Hall ED. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 2011; 8: 152-167
  • 22 Braughler JM, Hall ED. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J Neurosurg 1984; 61: 290-295
  • 23 Jiang S, Khan MI, Middlemiss PJ. et al. AIT-082 and methylprednisolone singly, but not in combination, enhance functional and histological improvement after acute spinal cord injury in rats. Int J Immunopathol Pharmacol 2004; 17: 353-366
  • 24 Zhang Y, Zhang L, Shen J. et al. Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model. Spine (Phila Pa 1976) 2014; 39: E493-499
  • 25 Tang P, Zhang Y, Chen C. et al. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. Sci Rep 2015; 5: 9691
  • 26 Libro R, Giacoppo S, Bramanti P. et al. Is the Wnt/beta-catenin pathway involved in the anti-inflammatory activity of glucocorticoids in spinal cord injury?. Neuroreport 2016; 27: 1086-1094
  • 27 Anderson DK, Means ED, Waters TR. et al. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg 1982; 56: 106-113
  • 28 Hall ED, Wolf DL, Braughler JM. Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Dose-response and time-action analysis. J Neurosurg 1984; 61: 124-130
  • 29 Hall ED, Braughler JM. Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+ + K+)-ATPase activity. Dose-response analysis during 1st hour after contusion injury in the cat. J Neurosurg 1982; 57: 247-253
  • 30 Beattie MS, Hermann GE, Rogers RC. et al. Cell death in models of spinal cord injury. Prog Brain Res 2002; 137: 37-47
  • 31 Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98: 16-37
  • 32 Becker KW, Kienecker EW, Andrae I. [Effect of locally applied corticoids on the morphology of peripheral nerves following neurotmesis and microsurgical suture]. Neurochirurgia (Stuttg) 1987; 30: 161-167
  • 33 Mohammadi R, Azad-Tirgan M, Amini K. Dexamethasone topically accelerates peripheral nerve repair and target organ reinnervation: a transected sciatic nerve model in rat. Injury 2013; 44: 565-569
  • 34 Mohammadi R, Amini K, Eskafian H. Betamethasone-enhanced vein graft conduit accelerates functional recovery in the rat sciatic nerve gap. J Oral Maxillofac Surg 2013; 71: 786-792
  • 35 Mohammadi R, Yadegarazadi MJ, Amini K. Peripheral nerve regeneration following transection injury to rat sciatic nerve by local application of adrenocorticotropic hormone. J Craniomaxillofac Surg 2014; 42: 784-789
  • 36 Zhu TS, Glaser M. Neuroprotection and enhancement of remyelination by estradiol and dexamethasone in cocultures of rat DRG neurons and Schwann cells. Brain Res 2008; 1206: 20-32
  • 37 Ha GK, Parikh S, Huang Z. et al. Influence of injury severity on the rate and magnitude of the T lymphocyte and neuronal response to facial nerve axotomy. J Neuroimmunol 2008; 199: 18-23
  • 38 Temporin K, Tanaka H, Kuroda Y. et al. Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neurosci Lett 2008; 440: 130-133
  • 39 Sun H, Yang T, Li Q. et al. Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci 2012; 8: 924-930
  • 40 Bremer J, Skinner J, Granato M. A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish. PLoS One 2017; 12: e0178854