J Knee Surg 2024; 37(03): 227-237
DOI: 10.1055/s-0043-1764403
Original Article

Characterizing Osteochondral Allograft Biomechanics for Optimizing Transplant Success: A Systematic Review

Josephine Luk
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   School of Medicine, University of Missouri, Columbia, Missouri
3   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Luke Troyer
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   School of Medicine, University of Missouri, Columbia, Missouri
,
Trent M. Guess
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
3   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Emma Teixeiro
2   School of Medicine, University of Missouri, Columbia, Missouri
4   University of Missouri, Molecular Microbiology & Immunology, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   School of Medicine, University of Missouri, Columbia, Missouri
3   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
1   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
2   School of Medicine, University of Missouri, Columbia, Missouri
3   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
› Author Affiliations

Abstract

Osteochondral allograft (OCA) transplantation has been largely successful in treating symptomatic articular cartilage lesions; however, treatment failures persist. While OCA biomechanics have been consistently cited as mechanisms of treatment failure, the relationships among mechanical and biological variables that contribute to success after OCA transplantation have yet to be fully characterized. The purpose of this systematic review was to synthesize the clinically relevant peer-reviewed evidence targeting the biomechanics of OCAs and the impact on graft integration and functional survival toward developing and implementing strategies for improving patient outcomes. The Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, MEDLINE, PubMed, Cumulative Index to Nursing and Allied Health (CINAHL), Google Scholar, and EMBASE were searched to identify articles for systematic review. This review of relevant peer-reviewed literature provided evidence that the biomechanics related to OCA transplantation in the knee have direct and indirect effects on functional graft survival and patient outcomes. The evidence suggests that biomechanical variables can be optimized further to enhance benefits and mitigate detrimental effects. Each of these modifiable variables should be considered regarding indications, patient selection criteria, graft preservation methodology, graft preparation, transplantation, fixation techniques, and prescribed postoperative restriction and rehabilitation protocols. Criteria, methods, techniques, and protocols should target OCA quality (chondrocyte viability, extracellular matrix integrity, material properties), favorable patient and joint characteristics, rigid fixation with protected loading, and innovative ways to foster rapid and complete OCA cartilage and bone integration to optimize outcomes for OCA transplant patients.



Publication History

Received: 20 December 2022

Accepted: 08 February 2023

Article published online:
20 March 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rodriguez-Merchan EC, Encinas-Ullan CA, Liddle AD. Osteochondral allografts for large osteochondral lesions of the knee joint: indications, surgical techniques and results. Arch Bone Jt Surg 2022; 10 (03) 245-251
  • 2 Valdivia Zúñiga CA, De Cicco FL. Osteochondral Allograft. In: StatPearls. StatPearls Publishing; 2022. Accessed December 19, 2022 at: http://www.ncbi.nlm.nih.gov/books/NBK560511/
  • 3 Cook JL, Stoker AM, Stannard JP. et al. A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 2014; 472 (11) 3404-3414
  • 4 Cook JL, Rucinski K, Crecelius CR, Ma R, Stannard JP. Return to sport after large single-surface, multisurface, or bipolar osteochondral allograft transplantation in the knee using shell grafts. Orthop J Sports Med 2021; 9 (01) 23 25967120967928
  • 5 Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 2014; 22 (02) 121-133
  • 6 Cotter EJ, Christian DR, Frank RM. et al. Survivorship of patellofemoral osteochondral allograft transplantation. Arthrosc Sports Med Rehabil 2019; 1 (01) e25-e34
  • 7 Stannard JP, Stannard JT, Schreiner AJ. Fresh osteochondral allograft transplants in the knee: bipolar and beyond. J Knee Surg 2020; 33 (12) 1172-1179
  • 8 Cook JL, Stannard JP, Stoker AM. et al. Importance of donor chondrocyte viability for osteochondral allografts. Am J Sports Med 2016; 44 (05) 1260-1268
  • 9 Marom N, Bugbee W, Williams R. Osteochondral grafts failures. Oper Tech Sports Med 2020; 1 (28) 150712
  • 10 Kandel RA, Gross AE, Ganel A, McDermott AG, Langer F, Pritzker KP. Histopathology of failed osteoarticular shell allografts. Clin Orthop Relat Res 1985; (197) 103-110
  • 11 Bowland P, Ingham E, Jennings L, Fisher J. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee. Proc Inst Mech Eng H 2015; 229 (12) 879-888
  • 12 Okeagu CN, Baker EA, Barreras NA, Vaupel ZM, Fortin PT, Baker KC. Review of mechanical, processing, and immunologic factors associated with outcomes of fresh osteochondral allograft transplantation of the talus. Foot Ankle Int 2017; 38 (07) 808-819
  • 13 Pisanu G, Cottino U, Rosso F. et al. Large osteochondral allografts of the knee: surgical technique and indications. Joints 2018; 6 (01) 42-53
  • 14 Pelker RR, Friedlaender GE. Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am 1987; 18 (02) 235-239
  • 15 Nam EK, Makhsous M, Koh J, Bowen M, Nuber G, Zhang LQ. Biomechanical and histological evaluation of osteochondral transplantation in a rabbit model. Am J Sports Med 2004; 32 (02) 308-316
  • 16 Wohl G, Goplen G, Ford J. et al. Mechanical integrity of subchondral bone in osteochondral autografts and allografts. Can J Surg 1998; 41 (03) 228-233
  • 17 Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 2017; 6: 87-100
  • 18 Cotter EJ, Hannon CP, Christian DR. et al. Clinical outcomes of multifocal osteochondral allograft transplantation of the knee: an analysis of overlapping grafts and multifocal lesions. Am J Sports Med 2018; 46 (12) 2884-2893
  • 19 Merkely G, Farina EM, Leite CBG. et al. Association of sex mismatch between donor and recipient with graft survivorship at 5 years after osteochondral allograft transplantation. Am J Sports Med 2022; 50 (03) 681-688
  • 20 Kunze KN, Ramkumar PN, Manzi JE, Wright-Chisem J, Nwachukwu BU, Williams III RJ. Risk factors for failure after osteochondral allograft transplantation of the knee: a systematic review and exploratory meta-analysis. Am J Sports Med 2023; 51 (05) 1356-1367
  • 21 Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8 (04) 114-124
  • 22 Centre for Evidence-Based Medicine (CEBM). OCEBM Levels of Evidence. Accessed December 19, 2022 at: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence
  • 23 Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med 2013; 158 (04) 280-286
  • 24 Pallante-Kichura AL, Cory E, Bugbee WD, Sah RL. Bone cysts after osteochondral allograft repair of cartilage defects in goats suggest abnormal interaction between subchondral bone and overlying synovial joint tissues. Bone 2013; 57 (01) 259-268
  • 25 Nuelle CW, Nuelle JAV, Cook JL, Stannard JP. Patient factors, donor age, and graft storage duration affect osteochondral allograft outcomes in knees with or without comorbidities. J Knee Surg 2017; 30 (02) 179-184
  • 26 Rucinski K, Cook JL, Crecelius CR, Stucky R, Stannard JP. Effects of compliance with procedure-specific postoperative rehabilitation protocols on initial outcomes after osteochondral and meniscal allograft transplantation in the knee. Orthop J Sports Med 2019; 7 (11) 23 25967119884291
  • 27 Ackermann J, Merkely G, Shah N, Gomoll AH. Decreased graft thickness is associated with subchondral cyst formation after osteochondral allograft transplantation in the knee. Am J Sports Med 2019; 47 (09) 2123-2129
  • 28 Lane JG, Massie JB, Ball ST. et al. Follow-up of osteochondral plug transfers in a goat model: a 6-month study. Am J Sports Med 2004; 32 (06) 1440-1450
  • 29 Kleemann RU, Schell H, Thompson M, Epari DR, Duda GN, Weiler A. Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. Am J Sports Med 2007; 35 (04) 555-563
  • 30 Bowland P, Cowie RM, Ingham E, Fisher J, Jennings LM. Biomechanical assessment of the stability of osteochondral grafts implanted in porcine and bovine femoral condyles. Proc Inst Mech Eng H 2020; 234 (02) 163-170
  • 31 Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 2002; 30 (01) 2-12
  • 32 Haber DB, Logan CA, Murphy CP, Sanchez A, LaPrade RF, Provencher MT. Osteochondral allograft transplantation for the knee: post-operative rehabilitation. Int J Sports Phys Ther 2019; 14 (03) 487-499
  • 33 Stark M, Rao S, Gleason B. et al. Rehabilitation and return-to-play criteria after fresh osteochondral allograft transplantation: a systematic review. Orthop J Sports Med 2021; 9 (07) 23 259671211017135
  • 34 Kubo T, Arai Y, Namie K. et al. Time-sequential changes in biomechanical and morphological properties of articular cartilage in cryopreserved osteochondral allografting. J Orthop Sci 2001; 6 (03) 276-281
  • 35 Bugbee WD, Pallante-Kichura AL, Görtz S, Amiel D, Sah R. Osteochondral allograft transplantation in cartilage repair: graft storage paradigm, translational models, and clinical applications. J Orthop Res 2016; 34 (01) 31-38
  • 36 Kahn D, Les C, Xia Y. Effects of cryopreservation on the depth-dependent elastic modulus in articular cartilage and implications for osteochondral grafting. J Biomech Eng 2015; 137 (05) 054502
  • 37 Kwan MK, Hacker SA, Woo SL, Wayne JS. The effect of storage on the biomechanical behavior of articular cartilage–a large strain study. J Biomech Eng 1992; 114 (01) 149-153
  • 38 Kwan MK, Wayne JS, Woo SL, Field FP, Hoover J, Meyers M. Histological and biomechanical assessment of articular cartilage from stored osteochondral shell allografts. J Orthop Res 1989; 7 (05) 637-644
  • 39 Rozen B, Brosh T, Salai M, Herman A, Dudkiewicz I. The effects of prolonged deep freezing on the biomechanical properties of osteochondral allografts. Cell Tissue Bank 2009; 10 (01) 27-31
  • 40 Pallante AL, Görtz S, Chen AC. et al. Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Joint Surg Am 2012; 94 (21) 1984-1995
  • 41 Stevenson S, Hohn RB, Templeton JW. Effects of tissue antigen matching on the healing of fresh cancellous bone allografts in dogs. Am J Vet Res 1983; 44 (02) 201-206
  • 42 Pennock AT, Robertson CM, Wagner F, Harwood FL, Bugbee WD, Amiel D. Does subchondral bone affect the fate of osteochondral allografts during storage?. Am J Sports Med 2006; 34 (04) 586-591
  • 43 Ranawat AS, Vidal AF, Chen CT, Zelken JA, Turner AS, Williams III RJ. Material properties of fresh cold-stored allografts for osteochondral defects at 1 year. Clin Orthop Relat Res 2008; 466 (08) 1826-1836
  • 44 Ball ST, Amiel D, Williams SK. et al. The effects of storage on fresh human osteochondral allografts. Clin Orthop Relat Res 2004; (418) 246-252
  • 45 Pallante AL, Bae WC, Chen AC, Görtz S, Bugbee WD, Sah RL. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am J Sports Med 2009; 37 (suppl 1, suppl 1): 24S-32S
  • 46 Stoker AM, Stannard JP, Cook JL. Chondrocyte viability at time of transplantation for osteochondral allografts preserved by the Missouri Osteochondral Preservation System versus standard tissue bank protocol. J Knee Surg 2018; 31 (08) 772-780
  • 47 Stoker AM, Caldwell KM, Stannard JP, Cook JL. Metabolic responses of osteochondral allografts to re-warming. J Orthop Res 2019; 37 (07) 1530-1536
  • 48 Stoker AM, Stannard JP, Kuroki K, Bozynski CC, Pfeiffer FM, Cook JL. Validation of the Missouri Osteochondral Allograft Preservation System for the maintenance of osteochondral allograft quality during prolonged storage. Am J Sports Med 2018; 46 (01) 58-65
  • 49 Hayes Jr DW, Averett RK. Articular cartilage transplantation. Current and future limitations and solutions. Clin Podiatr Med Surg 2001; 18 (01) 161-176
  • 50 Thomas DM, Stannard JP, Pfeiffer FM, Cook JL. Biomechanical properties of bioabsorbable fixation for osteochondral shell allografts. J Knee Surg 2020; 33 (04) 365-371
  • 51 Wang D, Lin K, Pais MD, Burge A, Williams RJ. Bone marrow concentrate does not improve osseous integration of osteochondral allograft transplants in the knee: a comparative magnetic resonance imaging analysis. Orthop J Sports Med 2018;6(7 suppl4):2325967118S00092
  • 52 Donneys A, Ahsan S, Perosky JE. et al. Deferoxamine restores callus size, mineralization, and mechanical strength in fracture healing after radiotherapy. Plast Reconstr Surg 2013; 131 (05) 711e-719e
  • 53 Ambra LF, de Girolamo L, Gomoll AH. Pulse lavage fails to significantly reduce bone marrow content in osteochondral allografts: a histological and DNA quantification study. Am J Sports Med 2019; 47 (11) 2723-2728
  • 54 Dwivedi S, Kutschke M, Nadeem M, Owens BD. Comparison of initial stability of oblong, large circular, and multiple-plug “snowman” osteochondral autografts for elongated focal cartilage lesions: a biomechanical study in a porcine model. Orthop J Sports Med 2021; 9 (11) 23 259671211044993
  • 55 Kock NB, Van Susante JLC, Buma P, Van Kampen A, Verdonschot N. Press-fit stability of an osteochondral autograft: Influence of different plug length and perfect depth alignment. Acta Orthop 2006; 77 (03) 422-428
  • 56 Haklar U, Tuzuner T, Uygur I, Kocaoglu B, Guven O. The effect of overlapping on the primary stability of osteochondral grafts in mosaicplasty. Knee Surg Sports Traumatol Arthrosc 2008; 16 (07) 651-654
  • 57 Su AW, Chen Y, Wailes DH. et al. Impact insertion of osteochondral grafts: Interference fit and central graft reduction affect biomechanics and cartilage damage. J Orthop Res 2018; 36 (01) 377-386
  • 58 Koh JL, Wirsing K, Lautenschlager E, Zhang LO. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med 2004; 32 (02) 317-320
  • 59 Su AW, Chen Y, Dong Y. et al. Biomechanics of osteochondral impact with cushioning and graft Insertion: cartilage damage is correlated with delivered energy. J Biomech 2018; 73: 127-136
  • 60 Du PZ, Markolf KL, Boguszewski DV. et al. Effects of proud large osteochondral plugs on contact forces and knee kinematics: a robotic study. Am J Sports Med 2018; 46 (09) 2122-2127
  • 61 Walter C, Trappe D, Beck A, Jacob C, Hofmann UK. Effect of graft positioning on dissipated energy in knee osteochondral autologous transplantation-a biomechanical study. J Orthop Res 2020; 38 (08) 1727-1734
  • 62 Duchow J, Hess T, Kohn D. Primary stability of press-fit-implanted osteochondral grafts. Influence of graft size, repeated insertion, and harvesting technique. Am J Sports Med 2000; 28 (01) 24-27
  • 63 Babu JM, Hodax JD, Fadale PD, Owens BD. Osteochondral allograft transplantation: identifying the biomechanical impact of using shorter grafts and pulsatile lavage on graft stability. J Knee Surg 2020; 33 (01) 29-33
  • 64 Babu J, Hodax J, Fadale P, Owens B. Osteochondral allograft transplantation: identifying the biomechanical impact of using smaller grafts. Arthroscopy 2019; 35 (12) e21-e22
  • 65 Lai WC, Bohlen HL, Fackler NP, Wang D. Osteochondral allografts in knee surgery: narrative review of evidence to date. Orthop Res Rev 2022; 14: 263-274
  • 66 Baumann CA, Baumann JR, Bozynski CC, Stoker AM, Stannard JP, Cook JL. Comparison of techniques for preimplantation treatment of osteochondral allograft bone. J Knee Surg 2019; 32 (01) 97-104
  • 67 Stoker AM, Baumann CA, Stannard JP, Cook JL. Bone marrow aspirate concentrate versus platelet rich plasma to enhance osseous integration potential for osteochondral allografts. J Knee Surg 2018; 31 (04) 314-320
  • 68 Kock NB, Hannink G, van Kampen A, Verdonschot N, van Susante JLC, Buma P. Evaluation of subsidence, chondrocyte survival and graft incorporation following autologous osteochondral transplantation. Knee Surg Sports Traumatol Arthrosc 2011; 19 (11) 1962-1970
  • 69 Du PZ, Markolf KL, Lama CJ, McAllister DR, Jones KJ. Contact forces acting on large femoral osteochondral allografts during forced knee extension. Am J Sports Med 2017; 45 (12) 2804-2811
  • 70 Farhan-Alanie MMH, Hall AC. Temperature changes and chondrocyte death during drilling in a bovine cartilage model and chondroprotection by modified irrigation solutions. Int Orthop 2014; 38 (11) 2407-2412
  • 71 Kane MS, Lau K, Crawford DC. Rehabilitation and postoperative management practices after osteochondral allograft transplants to the distal femur: a report from the Metrics of Osteochondral Allografts (MOCA) Study Group 2016 Survey. Sports Health 2017; 9 (06) 555-563
  • 72 Witt F, Duda GN, Bergmann C, Petersen A. Cyclic mechanical loading enables solute transport and oxygen supply in bone healing: an in vitro investigation. Tissue Eng Part A 2014; 20 (3-4): 486-493
  • 73 Lane JG, Tontz Jr WL, Ball ST. et al. A morphologic, biochemical, and biomechanical assessment of short-term effects of osteochondral autograft plug transfer in an animal model. Arthroscopy 2001; 17 (08) 856-863
  • 74 Tírico LEP, McCauley JC, Pulido PA, Bugbee WD. Osteochondral allograft transplantation of the femoral condyle utilizing a thin plug graft technique. Am J Sports Med 2019; 47 (07) 1613-1620