Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2018; 28(05): 275-281
DOI: 10.1055/a-0577-5139
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Dry Immersion as a Novel Physical Therapeutic Intervention for Rehabilitation of Parkinson’s Disease Patients: A Feasibility Study

„Dry Immersion“ als neuartige physikalisch-therapeutische Intervention bei Parkinson-Patienten: Eine Machbarkeitsstudie
A. Meigal
1   Institute of Advanced Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
,
L. Gerasimova-Meigal
2   Dept. of Human and Animal Physiology and Pathophysiology, Medical Institute, Petrozavodsk State University, Petrozavodsk, Russia
,
I. Saenko
3   State Scientific Center – Institute of Biomedical Problems (IBMP), Moscow, Russia
,
N. Subbotina
4   Dept. of Neurology and Psychiatry, Medical Institute, Petrozavodsk State University, Petrozavodsk, Russia
› Author Affiliations
Further Information

Publication History

received 18 July 2017

accepted 12 February 2018

Publication Date:
22 May 2018 (online)

Abstract

Background The study was aimed at evaluating therapeutic effect of analogue microgravity in a form of “dry immersion” (DI) on motor and non-motor symptoms in patients with Parkinson’s disease (PD).

Methods A group of 12 PD patients aged 67 (63–68) years, Hoenh and Yahr staged 1–3, participated in this study. During DI a subject wrapped in a thin waterproof material was immersed in a bathtub at 31°C. The rehabilitation program included 7 DI sessions (45 min each, 2 times per week, on-medication). The Unified Parkinson’s Disease Rating Scale parts I, II and III (UPDRS-I/II/III) and the Hamilton’s Depression Rate Scale (HDRS) were applied before the 1st, after 4th and 7th DI session, and 2 weeks and 2 months after the whole DI program.

Results The UPDRS-III score, HDRS, and rigidity signs score have significantly decreased by 16–35% two weeks after the DI program. Two months after completion of the DI program all studied parameters regained their pre-treatment values. The UPDRS-I, II, tremor and akinesia signs score did not respond to the DI program.

Conclusion The DI program promises rehabilitation potential for patients with parkinsonism.

Zusammenfassung

Hintergrund Das Ziel dieser Studie war die Erforschung der therapeutischen Wirkung der analogen Mikrogravitation in Form der „Trocken Immersion“ (TI) auf motorische und nicht motorische Symptomatik bei den Parkinsonkranken.

Methoden An der Studie haben 12 Parkinsonkranke im Alter von 63–68 Jahren teilgenommen (nach Hoenh und Yahr im Stadium 1–3). In der Zeit der TI wurden die Testpersonen regelmäßig in eine Wanne mit warmem Wasser (31°C) gelegt, dabei waren sie in dünnes, wasserdichtes Material gewickelt. Das Programm der Rehabilitation bestand aus 7 Sitzungen á 45 Min, 2-mal die Woche. Der aktuelle Status der Testpersonen wurde mit dem UPDRS-I, II, III und dem HDRS beurteilt. Dies tat man vor der 1., nach der 4. und 7. Sitzung sowie nach 2 Wochen und 2 Monaten am Ende des TI-Programms.

Ergebnisse Nach dem UPDRS-III und dem HDRS sind die Punkte um 16–35 gesunken, außerdem ließen Muskelstarre schon nach der 7. Sitzung der TI und nach 2 Wochen nach. Nach dem UPDRS-I, UPDRS-II, Muskelzittern und dem Akinesie haben sich die Punkte kaum verändert. Nach bereits 2 Monaten ohne TI kehrten die Testpersonen in denselben Zustand, wie vor der Behandlung, zurück.

Fazit Das Rehabilitationsprogramm auf der TI-Basis erwies sich als erfolgreich und verspricht den Parkinsonkranken eine deutliche Verbesserung.

 
  • References

  • 1 deLau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5: 525-535
  • 2 Dowding CH, Shenton CL, Salek SS. A review of the health-related quality of life and economic impact of Parkinson's disease. Drugs Aging 2006; 23: 693-721
  • 3 Racette BA, Willis AW. Time to change the blind men and the elephant approach to Parkinson disease?. Neurology 2015; 85: 190-196
  • 4 Boersma I, Jones J, Carter J. et al. Parkinson disease patients' perspectives on palliative care needs: What are they telling us?. Neurol Clin Pract 2016; 6: 209-219
  • 5 Lamont RM, Morris ME, Menz HB. et al. Falls in people with Parkinson's disease: A prospective comparison of community and home-based falls. Gait Posture 2017; 55: 62-67
  • 6 Park A, Stacy M. Non-motor symptoms in Parkinson’s disease. J Neurol 2009; 256 (Suppl. 03) 293-298
  • 7 Oertel W, Schulz JB. Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem 2016; 39 (Suppl. 01) 325-337
  • 8 Tambasco N, Romoli M, Calabresi P. Levodopa in Parkinson’s disease: current status and future developments. Curr Neuropharmacol 2017; DOI: 10.2174/1570159×15666170510143821.
  • 9 Rissanen SM, Kankaanpää M, Tarvainen MP. et al. Analysis of EMG and acceleration signals for quantifying the effects of deep brain stimulation in Parkinson’s disease. IEEE Trans Biomed Eng 2011; 58: 2545-2553
  • 10 Metman LV, Slavin KV. Advances in functional neurosurgery for Parkinson's disease. Mov Disord 2015; 30: 1461-1470
  • 11 Ridgel AL, Phillips RS, Walter BL. et al. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease. Front Neurol 2015; 6: 194 doi: 10.3389/fneur.2015.00194
  • 12 David FJ, Robichaud JA, Leurgans SE. et al. Exercise improves cognition in Parkinson's disease: The PRET-PD randomized, clinical trial. Mov. Disord 2015; 30: 1657-1663
  • 13 Picelli A, Tamburin S, Passuello M. et al. Robot-assisted arm training in patients with Parkinson’s disease: a pilot study. J Neuroeng Rehabil 2014; 11: 28 doi: 10.1186/1743-0003-11-28
  • 14 Raglio A. Music therapy interventions in Parkinson’s disease: The state-of-the-art. Front Neurol 2015; 6: 185 doi: 10.3389/fneur.2015.00185
  • 15 Mirelman A, Maidan I, Deutsch JE. Virtual reality and motor imagery: promising tools for assessment and therapy in Parkinson’s disease. Mov Disord 2013; 28: 1597-1608
  • 16 Hackney ME, Earhart GM. Short duration, intensive tango dancing for Parkinson disease: An uncontrolled pilot study. Complement Ther Med 2009; 17: 203-207
  • 17 de Dreu MJ, Kwakkel G, van Wegen EE. Partnered dancing to improve mobility for people with Parkinson’s Disease. Front Neurosci 2015; 9: 444 doi: 10.3389/fnins.2015.00444
  • 18 Ni M, Signorile JF, Mooney K. et al. Comparative effect of power training and high-speed Yoga on motor function in older patients with Parkinson Disease. Arch Phys Med Rehabil 2016; 97: 345-354.e15
  • 19 Hackney ME, Earhart GM. Tai Chi improves balance and mobility in people with Parkinson disease. Gait Posture 2008; 28: 456-460
  • 20 Kozlovskaya IB, Sayenko IV, Vinogradova OL. et al. New approaches to countermeasures of the negative effects of microgravity in long-term space flights. Acta Astronaut 2006; 59: 13-19
  • 21 Navasiolava NM, Custaud M-A, Tomilovskaya ES. et al. Long-term dry immersion: review and prospects. Eur J Appl Physiol 2011; 111: 1235-1260
  • 22 Watenpaugh DE. Analogs of microgravity: head-down tilt and water immersion. J Appl Physiol 2016; 120: 904-914
  • 23 Carroll LM, Volpe D, Morris ME. et al. Aquatic exercise therapy for people with Parkinson disease: A randomized controlled trial. Arch Phys Med Rehabil 2017; 98: 631-638
  • 24 Vivas J, Arias P, Cudeiro J. Aquatic therapy versus conventional land-based therapy for Parkinson’s disease: an open-label pilot study. Arch Phys Med Rehabil 2011; 92: 1202-1210
  • 25 Miyai I, Fujimoto Y, Yamamoto H. et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 2002; 83: 1370-1373
  • 26 Oaklander M. Can float therapy really treat stress?. Time 2015; 186: 26
  • 27 Aarsland D, Påhlhagen S, Ballard CG. et al. Depression in Parkinson disease – epidemiology, mechanisms and management. Nature Reviews Neurology 2012; 8: 35-47
  • 28 Demangel R, Treffel L, Py G. et al Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model. J Physiol 2017; 22 doi: DOI: 10.1113/JP273895.
  • 29 Cronin NJ, Valtonen AM, Waller B. et al. Effects of short term water immersion on peripheral reflex excitability in hemiplegic and healthy individuals: A preliminary study. J Musculoskelet Neuronal Interact 2016; 16: 58-62
  • 30 Magrinelli F, Picelli A, Tocco P. et al. Pathophysiology of motor dysfunction in Parkinson's Disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016; 2016: 9832839 doi: 10.1155/2016/9832839
  • 31 Grigor’eva LS, Kozlovskaia IB. Effect of 7-day immersion hypokinesia on the characteristics of precise movements. Kosm Biol Aviakosm Med 1985; 19: 38-42 (in Russian, English summary)
  • 32 Gallasch E, Kozlovskaya I, Löscher WN. et al. Arm tremor and precision of hand force control in a short and long term flight on the Mir-Space-Station. Acta Astronaut 1994; 33: 49-55
  • 33 Meigal AY, Rissanen SM, Tarvainen MP. et al. Linear and nonlinear tremor acceleration characteristics in patients with Parkinson’s disease. Physiol Meas 2012; 33: 395-412
  • 34 Van Ombergen A, Demertzi A, Tomilovskaya E. et al. The effect of spaceflight and microgravity on the human brain. J Neurol 2017; 264 (Suppl. 01) 18-22
  • 35 Schneider S, Brümmer V, Göbel S. et al. Parabolic flight experience is related to increased release of stress hormones. Eur J Appl Physiol 2007; 100: 301-308
  • 36 Strewe C, Feuerecker M, Nichiporuk I. et al. Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev Neurosci 2012; 23: 673-680
  • 37 Palamara G, Gotti F, Maestri R. et al. Land plus aquatic therapy versus land-based rehabilitation alone for the treatment of balance dysfunction in Parkinson disease: a randomized controlled study with 6-Month follow-up. Arch Phys Med Rehabil 2017; 98: 1077-1085
  • 38 Mao ZL, Modi NB. Dose-Response Analysis of the effect of carbidopa-levodopa extended-release capsules (IPX066) in levodopa-naive patients with Parkinson disease. J Clin Pharmacol 2016; 56: 974-982
  • 39 Ruonala V, Pekkonen E, Airaksinen O. et al. Levodopa-induced changes in electromyographic patterns of patients with advanced Parkinson’s disease Frontiers in Neurol. 2018; 9: 35 doi: 10.3389/fneur.2018.00035