Antiangiogenic Activity and Cytotoxicity of Triterpenoids and Homoisoflavonoids from Massonia pustulata and Massonia bifolia

Authors
Sianne L. Schwikkard1,2, Hannah Whitmore2, Timothy W. Corson3, Kamakshi Sishtla3, Moses K. Langat2,4, Mark Carew1, Dulcie A. Mulholland3,4

Affiliations
1 School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, United Kingdom
2 Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
3 Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, U.S.A.
4 School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa

Key words
Massonia species, Hyacinthaceae, homoisoflavonoids, spirocyclic nortriterpenoids, cytotoxicity, angiogenesis

received December 1, 2017
revised February 6, 2018
accepted February 8, 2018

ABSTRACT
The Hyacinthaceae family (sensu APGII), with approximately 900 species in around 70 genera, plays a significant role in traditional medicine in Africa as well as across Europe and the Middle and Far East. The dichloromethane extract of the bulbs of Massonia pustulata (Hyacinthaceae sensu APGII) yielded two known homoisoflavonoids, (R)-5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromanone 1 and 5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromone 2 and four spirocyclic nortriterpenoids, eucosterol 3, 28-hydroxyeucosterol 4 and two previously unreported triterpenoid derivatives, 17S,23S-17α,23-epoxy-3β,22β,29-trihydroxylanost-8-en-27,23-olide 5, and 17S,23S-17α,23-epoxy-28,29-dihydroxylanost-8-en-3-on-27,23-olide 6. Compounds 1, 2, 3, and 5 were assessed for cytotoxicity against CaCo-2 cells using a neutral red uptake assay. Compounds 1, 2, and 5 reduced cell viability by 70% at concentrations of 30, 100, and 100 µM, respectively. Massonia bifolia yielded three known homoisoflavonoids, (R)-4′-hydroxy)-5-hydroxy-7-methoxy-4-chromanone 1, (R)-4′-hydroxy)-5,7-dihydroxy-4-chromanone 7 and (R)-3′-hydroxy-4′-methoxy)-5,7-dihydroxy-4-chromanone 9, two previously unreported homoisoflavonoids, (E)-3-benzylidene-(3′,4′-dihydroxy)-5-hydroxy-7-methoxy-4-chromanone 8 and (R)-(3′,4′-dihydroxy)-5-hydroxy-7-methoxy-4-chromanone 10, and a spirocyclic nortriterpenoid, 15-deoxoeucosterol 11. Compounds 1, 1Ac, 7, 8, 9, and 10 were screened for antiangiogenic activity against human retinal microvascular endothelial cells. Some compounds showed dose-dependent antiproliferative activity and blocked endothelial tube formation, suggestive of antiangiogenic activity.

Introduction
The genus Massonia Houttuyn (Hyacinthaceae, subfamily Hyacinthoideae, tribe Massonieae) [1] is found in the dry areas of South Africa and southwestern Namibia [2]. The genus was named after a Scottish student gardener at Kew, Francis Masson, who collected seeds in the Cape in 1772 [3]. The genus is not known to be used by traditional healers in the region [4]. Massonia pustulata, first described in 1791 by Nikolaus von Jacquin, flowers in winter and a dry summer dormancy is required [3]. Massonia bifolia (syn. Whiteheadia bifolia) was originally described by von Jacquin in 1791 as Eucomis bifolia; however, the plant was “rediscovered” as Melanthium massonii in 1804 and as Whiteheadia latifolia in 1865 [5]. It was soon after renamed as W. bifolia due to similarities between the collected specimen and that described by Jaquin [6]. It remained the only species in the Whiteheadia genus until 2004...
when it was transferred to Massonia by Manning et al. due to the results of its DNA sequence analysis [6]. This analysis was prompted by the discovery of a second species, Whiteheadia etesionamibensis, which was tentatively placed in the Whiteheadia genus. However, DNA analysis indicated that this species fell between the genera Whiteheadia and Massonia, suggesting it was an evolutionary stepping stone from Massonia to Whiteheadia. As such, Massonia was given a broader scope to include Whiteheadia rather than to create a second, new single-species genus for W. etesionamibensis [5]. The phytochemistry of the genus Massonia has not been investigated previously.

The subfamily Hyacinthoideae (sensu APGII) is characterized by the presence of homoisoflavonoids and spirocyclic nortriterpenoids, usually of the lanostane type [7]. Genera from this family are widely used by traditional healers [7], and homoisoflavonoids isolated from this subfamily have shown anti-inflammatory activity [8–10] and activity against colon (HT-29) and breast cancer (MDA-MB-435) [11, 12] cells. Spirocyclic nortriterpenoids have shown activity against HeLa cells [13] and HSC-2 oral squamous carcinoma cells [14–16]. Homoisoflavonoids 1 and 2 and spirocyclic nortriterpenoids 3, 4, 5, and 6 were isolated from the dichloromethane extract of the bulbs of M. pustulata and were assessed for antiproliferative activity against CaCo-2 cells. Homoisoflavonoids 1, 7, 8, 9, and 10 and the spirocyclic nortriterpenoid 11 were isolated from the ethanol extract of the bulbs of M. bifolia. Compound 1 was acetylated to aid in separation, forming compound 1Ac. Since some homoisoflavonoids have been shown to have antiangiogenic activity [17–20], the ability of compounds 1, 1Ac, 7, 8, 9, and 10 to block in vitro angiogenesis of human retinal microvascular endothelial cells (HRECs) was assessed. Structures are provided in ▶ Fig. 1.

Results and Discussion

(R)-5-Hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromanone 1 and 5-hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromone 2 have been isolated previously from Lachenalia rubida Jacq. [21]. This species, like M. pustulata, is from the subfamily Hyacinthoideae and endemic to the dry areas of South Africa and Namibia. (R)-5-Hydroxy-3-(4-hydroxybenzyl)-7-methoxy-4-chromone 1 has also been isolated from Ledebouria graminifolia Bak. (Jessop) [22]. Eucosterol 3 was first isolated from Eucomis autumnalis [23] and later from Eucomis bicolor [24], (17S,23S)-23,17-epoxy-3β,28,29-trihydroxy-27-norlanost-8-en-24-one 4 has been isolated previously from Eucomis zambesiaca [24], (R)-(4′-hydroxy)-5,7-dihydroxy-4-chromanone 7 has been extracted from Scilla scleroides [25], and Leopoldia (Muscari) comosa [26] and several Ledebouria species [10] and (R)-(3′-hydroxy-4′-methoxy)-5,7-dihydroxy-4-chromanone 9 has been extracted from Scilla nervosa [12]. 15-Deoxoeucosterol 11 has been isolated from several plant

![Fig. 1 Structures of compounds 1–11.](image-url)
species including *Scilla scilloides* [27] and *Pseudoprospero firmifolium* [28].

Compound 5 was isolated as an amorphous white powder. HRESIMS indicated a formula of C_{30}H_{46}O_{6} with [M + H]^+ at m/z 503.33666 (C_{30}H_{46}O_{6} + H requires 503.33726). The FTIR spectrum showed absorption peaks at 3391 cm\(^{-1}\) and 1758 cm\(^{-1}\) due to hydroxyl and carbonyl stretches respectively. NMR spectra indicated a lanosterol-type triterpenoid, with a spirocyclic \(\gamma\)-lactone side chain, typical of the subfamily Hyacinthoideae. The spectroscopic data obtained was very similar to that obtained for the co-isolated eucosterol 3. As with eucosterol, an 8,9-double bond (\(\delta_c 134.7\) and 134.6, respectively), a 3β-hydroxy group (\(\delta_c 80.7\) and \(\delta_H 3.50\) dd, \(J = 6.0\) Hz and 12.2 Hz, \(W_{1/2} = 20.3\) Hz) [24] and an oxymethylene group at C-29 (\(\delta_c 64.3\) and \(\delta_H 4.27, \delta_H 3.36\)) were noted. Four tertiary methyl groups were present at \(\delta_H 0.94\) (3H-18), \(\delta_H 0.96\) (3H-19), \(\delta_H 1.25\) (3H-28), and \(\delta_H 2.24\) (3H-30), together with two secondary methyl group resonances at \(\delta_H 1.31\) (3H-21) and \(\delta_H 1.39\) (3H-26). The presence of the C-17 carbon resonance at \(\delta_c 99.4\) together with C-23 fully substituted carbon resonance at \(\delta_H 115.5\) indicated a spirocyclic ring system as shown in ▶ Fig. 2. [29]. An oxymethine proton resonance ascribed to H-22 was noted (\(\delta_H 3.99\)), and the corresponding carbon resonance (\(\delta_c 84.0\)) showed correlations in the HMBC spectrum with the H-21 (\(\delta_H 1.31\)) resonance. Further correlations were seen between the H-22 (\(\delta_H 3.99\)) and C-17 (\(\delta_c 99.4\)) resonances, the 3H-26 (\(\delta_H 1.39\)) and C-27 (\(\delta_c 178.8\)) and C-24 (\(\delta_c 42.0\)) resonances, and the H-24 (\(\delta_H 2.45\)) and C-27 (\(\delta_c 178.8\)) and C-23 (\(\delta_c 115.5\)) resonances. A correlation was seen between the 3H-21 (\(\delta_H 1.31\)) and H-22 (\(\delta_H 3.99\)) resonances in the NOESY spectrum, indicating the hydroxyl group at C-22 was \(\beta\). The compound was identified as the previously unreported (175,235S)-17a,23-epoxy-3β,22β,29-trihydroxylanost-8-ene-27,23-olide.

Compounds 6 was isolated as an amorphous white powder. The FTIR spectrum showed absorption peaks at 3353 cm\(^{-1}\) and 3250 cm\(^{-1}\) indicative of the presence of hydroxyl groups as well as absorption peaks at 1772 cm\(^{-1}\) and 1723 cm\(^{-1}\) indicative of carbonyl groups. The molecular ion was not seen in the LCMS. The NMR data for compound 6 was similar to that obtained for compound 5, but differed in showing the presence of a keto group at C-3 (\(\delta_c 213.6\)), an oxymethylene group at C-28 (\(\delta_c 63.4\)), and the absence of the hydroxyl group at C-22 (\(\delta_c 32.3\) instead of \(\delta_c 84.0\)). Correlations were seen in the HMBC spectrum between the H-24a (\(\delta_H 2.00\)) and H-24b (\(\delta_H 2.72\)) and C-23 (\(\delta_c 113.6\)) resonances, and between 3H-26 (\(\delta_H 1.28\)) and C-25 (\(\delta_c 35.8\)) resonances. Correlations were also noted in the HMBC spectrum between the 3H-30 (\(\delta_H 1.05\)) and C-8 (\(\delta_c 133.5\)) resonances and between the 3-H-19 (\(\delta_H 0.98\)) and C-9 (\(\delta_c 135.4\)) resonances. Various glycoside derivatives of compound 6 have been isolated from *Scilla peruviana* [13] but the aglycone (175,235S)-17a,23-epoxy-29-dihydroxylanost-8-ene-27,23-olide has not been reported previously. Key correlations seen in the HMBC spectra of compounds 5 and 6 are shown in ▶ Fig. 2.

HRESIMS of compound 9 indicated a [M + H]^+ ion at m/z 317.1020 corresponding to a molecular formula of C_{17}H_{18}O_{5} for the compound. The 1H NMR spectrum indicated this compound was a 3-benzyl-4-chromanone-type homoisoflavonoid due to characteristic proton peaks and coupling patterns, including the two H-2 proton resonances at \(\delta_H 4.30\) (dd, \(J = 11.3, 4.4\) Hz) and \(\delta_H 4.14\) (dd, \(J = 11.3, 7.4\) Hz), the H-3 resonance at \(\delta_H 2.84\) (m) and the two H-9 resonances at \(\delta_H 3.08\) (dd, \(J = 14.4, 5.3\) Hz) and \(\delta_H 1.62\) (dd, \(J = 14.4, 10.1\) Hz). Also seen in the proton spectrum was a singlet peak at \(\delta_H 3.83\) integrating to 3H, indicating that a single methoxy group was present.

The C-4 carbonyl carbon resonance was present at \(\delta_c 200.1\) and a H-bonded OH group proton resonance was seen at \(\delta_H 12.10\), confirming the placement of a hydroxy group at C-5. Two meta-coupled proton resonances were present (\(\delta_H 6.05, J = 2.3\) Hz, H-6 and 6.02) \(J = 2.3\) Hz, H-8). Both resonances showed a correlation with the singlet methoxy group proton resonance in the NOESY spectrum, so a methoxy group was placed at C-7.

The B-ring was 1,3,4-trisubstituted as shown by the typical splitting patterns of H-2′ (\(\delta_H 6.70, d, J = 2.1\) Hz), H-5′ (\(\delta_H 6.73, d, J = 8.0\) Hz) and H-6′ (\(\delta_H 6.57, dd, J = 8.0, 2.1\) Hz) in the 1H NMR spectrum. Hydroxy groups were placed at the remaining C-3′- and C-4′-positions. CD analysis confirmed the configuration at C-3 as \(R\) due to the negative Cotton effect seen at 290 nm [30], and the compound was identified as the previously unreported 3R-(3′,4′-dihydroxybenzyl)-5-hydroxy-7-methoxy-4-chromanone.

Compound 10 was isolated as a brown oil. HRESIMS indicated a protonated molecular ion at m/z 315.0863, indicating a molecular formula of C_{17}H_{14}O_{6} for the compound. This compound was identified as the E-3-benzylidene homoisoflavonoid analogue of compound 9, E-3-(3′,4′-dihydroxybenzylidene)-5-hydroxy-7-methoxy-4-chromanone. The two equivalent H-2 resonances occurred at \(\delta_H 5.39\) (\(J = 1.8\) Hz) and the H-9 resonance occurred at \(\delta_H 7.72\) (br s). The E-configuration of the double bond was confirmed by the characteristic H-9 proton shift. For the E-configuration H-9 occurs in the \(\delta_H 7.58-7.79\) region while for the Z-configuration, the H-9 resonance occurs at about \(\delta_H 6.86\) [31].

Compounds 1, 2, 3, and 5 were assessed for activity against CaCo-2 cells using a neutral red uptake assay [32, 33] (▶ Fig. 3). Healthy cells take up neutral red into lysosomes whereas dead or damaged cells do not. The amount of neutral red recovered from cells at the end of the assay (as determined by absorbance) is related to the number of viable cells after exposure to a test compound. Cell viability was reduced below 70% by compound 1 at 30 \(\mu\)M and for compounds 2 and 5 at 100 \(\mu\)M. Compound 3 had...
no effect on cell viability. Compound 2 at 100 µM (p < 0.05) was of similar activity (22% viability) to actinomycin D (10 µg/mL or 7.96 µM, purchased from Sigma-Aldrich, cat no: A1410, 98% purity), a known cytotoxic agent, but at 13× concentration (Fig. 3). Overall, the reported activity was moderate for these compounds.

Compounds 1, 1Ac, and 7–10 were tested for their effect on proliferation of HRECs (Fig. 4). GI₅₀ values for the compounds, the concentration at which the proliferation of cells is reduced by 50% relative to the DMSO control, were calculated, and compounds that only reduced cell proliferation at the highest concentration tested (relative to DMSO control) were reported as having a GI₅₀ > 100 µM. Compound 1 was reported to have the most potent GI₅₀ value of 24.8 µM, and compounds 7 and 8 were found to have GI₅₀ values of 35.8 µM and 93.2 µM, respectively. Compounds 1Ac, 9, and 10 had negligible effect on cell proliferation.

We then tested these compounds for anti-angiogenic activity in an in vitro Matrigel tube formation assay. This assay models the endothelial cells’ ability to form vascular structures. HRECs overall tubule formation decreased significantly and in a dose-dependent manner when compared to DMSO (Fig. 5). Compounds 1, 7, and 8 again proved most potent of the compounds to block vascular tube formation by HRECs.

The majority of (synthetic) antiangiogenic homoisoflavonoids described previously have trisubstituted A-rings [19]; thus, the finding that compound 1, disubstituted on this ring, had reasonably potent activity is novel. Taken together with previous structure activity relationship (SAR) studies on synthetic homoisoflavonoids, these findings help identify homoisoflavonoids that could be pursued towards therapies for neovascular eye diseases such as wet age-related macular degeneration.

Photographs of plant material (1S), spectra for compounds 5, 6, 8, and 10 (2S), and results of HREC cell proliferation studies (3S) are available as Supporting Information.

Materials and Methods

General experimental procedures

Optical rotations were measured at room temperature on a JASCO-P-1020 polarimeter and IR spectra were recorded using a Perkin-Elmer (2000 FTIR) spectrophotometer using KBr windows. Electronic circular dichroism (ECD) spectra were measured on an Applied Photophysics Chirascan CD spectrometer using a 1-mm cell and CH₃CN as the solvent. 1H, 13C, and 2D NMR spectra were recorded on a Bruker AVANCE III NMR spectrometer, operating at 500 MHz for 1H and 125 MHz for 13C, and 2D NMR spectra were recorded on a Bruker AVANCE III NMR spectrometer, operating at 500 MHz for 1H and 125 MHz for 13C, using standard experiments from the Bruker pulse programs library. Chemical shifts are reported in ppm (δ) referencing the solvent signal (CDCl₃) as internal standard respect to TMS (0 ppm), and coupling constants (J) are measured in Hz. HRESIMS was performed on a Bruker MicroToF mass spectrometer, using an Agilent 100 HPLC to introduce samples. Gravity column chromatography was performed using silica gel (Merck Art. 9385) packed 1- or 4-cm diameter columns. TLC was performed on aluminum precoated silica gel plates (Merck 9385) visualized using anisaldehyde spray reagent. Mass spectra of compounds 9 and 10 were recorded on a Thermo Q-Exactive Orbitrap mass spectrometer using direct HESI injection.

Plant material

M. pustulata and *M. bifolia* bulbs were obtained from the collection of the Royal Horticultural Society, Wisley Gardens, Wisley, Surrey, UK (W20150204A WSY and W20150850 WSY, respectively) on June 10, 2016, and identity was confirmed by comparison against voucher specimens at the Wisley Gardens Herbarium (Section 15, Supporting Information).

Extraction and isolation of compounds from *M. pustulata* and *M. bifolia*

The bulbs of *M. pustulata* (672.1 g) were chopped and extracted by shaking successively for 24 h in dichloromethane (CH₂Cl₂) and then MeOH to yield 8.35 g of CH₂Cl₂ extract and 29.67 g of MeOH extract. The dichloromethane extract was fractionated over silica gel starting with EtOAc:CH₂Cl₂ (1:9) and increasing the concen-
tration of EtOAc. One hundred ten fractions of 20 mL each were collected. Further fractionation over Sephadex LH20 (1:1, CH2Cl2:MeOH) yielded compounds 1–6 (20 mg, 8.9 mg, 50 mg, 15 mg, 4.6 mg, and 28 mg, respectively).

Bulbs of M. bifolia (263.0 g) were chopped and extracted by shaking for 2×24 h in EtOH, yielding a combined 5.13 g of extract. The extract was fractionated over silica gel, starting with CH2Cl2 as solvent and gradually increasing the polarity by addition of use of EtOAc. Ninety-five fractions of 20 mL each were collected. Further fractionation over Sephadex LH20 (1:1, CH2Cl2:MeOH) yielded compounds 1 and 7–11 (19 mg, 9.8 mg, 2.3 mg, 3.2 mg, 1.4 mg, and 6.9 mg, respectively). Structures of compounds 1–11 are shown in ▶ Fig. 1.

(17S,23S)-17α,23-epoxy-3β,22β,29-trihydroxylanost-8-en-27,23-olide (5): Amorphous white solid (4.6 mg, 75% pure; from NMR); [α]D23 + 44.4 (CHCl3, c = 2.7 mg/mL); IR νmax · cm⁻¹: 3391, 2934, 1758, 1455, 1375, 1034, 736; 1H- and 13C NMR (500 MHz, CDCl3) see ▶ Table 1 and Section 2S (Supporting Information). HRESIMS: m/z 503.33667 for [M + +H]+ (calcd. for C30H47O6, 503.33726).

(17S,23S)-17α,23-epoxy-28,29-dihydroxylanost-8-en-3-one-27,23-olide (6): Amorphous white solid (28 mg, 70% pure from NMR); [α]D23 + 44.4 (CHCl3, c = 2.7 mg/mL); IR νmax · cm⁻¹: 3391, 2934, 1758, 1455, 1375, 1034, 736; 1H- and 13C NMR (500 MHz, CDCl3) see ▶ Table 1 and Section 2S (Supporting Information). HRESIMS: m/z 503.33667 for [M + +H]+ (calcd. for C30H47O6, 503.33726).

3R-(3′,4′-dihydroxybenzyl)-5-hydroxy-7-methoxy-4-chromanone (9): cream/brown oil (3.2 mg); [α]D20 = +67.5 (MeOH, C = 1.6 mg/mL); CD (CH3CN) 256 nm (Δε + 0.25), 286 nm (Δε - 9.19), 313 nm (Δε + 1.05); IR νmax · cm⁻¹: 3349, 2949, 2925, 1639, 1449, 1014; 1H- and 13C NMR (500 MHz, MeOD) see ▶ Table 2 and Section 2S (Supporting Information). HESIMS m/z 317.1020 [M + H]+, (calcd. for C17H17O6, 317.1025).

E-3-(3′′,4′′-dihydroxybenzylidene)-5-hydroxy-7-methoxy-4-chromanone (10): brown oil (1.4 mg); IR νmax · cm⁻¹: insufficient quantity of compound; 1H- and 13C NMR (500 MHz, MeOD). See ▶ Table 2 and Section 2S (Supporting Information). HESIMS m/z 315.0863 [M + H]+, (calcd. for C17H15O6, 315.0868).

Pharmacological assays
Neutral red assay
CaCo-2 human colon carcinoma cells (Caco-2 [ECACC 86010202]) from Public Health England, UK, were cultured in Eagle’s Minimum Essential Medium (ATCC/LGC Standards) supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 1% nonessential amino acids, and 100 U/mL penicillin/100 U/mL streptomycin and maintained in 5% CO2/95% air in an incubator at 37 °C. Cells were plated in 96-well plates at 2 × 10⁴ cells/well for 48 h. Cells were then treated for 48 h with one of the following, in 4 replicates: culture medium alone (untreated control); 0.1% DMSO (vehicle control; maximum DMSO exposed to cells); actinomycin D 10 µg/mL (positive control); test substances at 1, 3, 10, 30, and 100 µM (diluted from a 100 mM stock in DMSO). Cells were washed with PBS, and neutral red (25 µg/mL in culture medium, diluted from a stock of 2.5 mg/mL in ultrapure water) was added for 3 h. Cells were washed with PBS, and neutral red ex-
Absorbance was read at 540 nm. Data are reported from five independent experiments (different cell passages). The mean absorbance of wells without cells (blank) was subtracted from all other readings. Plates were accepted for analysis given adequate neutral red loading in vehicle treated cells (> 0.18 absorbance units) and positive control activity (< 60% viability); Z-factor values were in the range 0.68–0.88. Replicates were averaged to give one treatment value per plate. All plate treatment values were divided by the mean value of vehicle-treated cells on the same plate, so data was normalized as percentage of maximum cell viability. The plate treatment values were averaged to produce group means of n = 5. Analysis of multiple means was performed by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test against the untreated cells (negative control) value, using GraphPad Prism 6.

HREC proliferation assay

Endothelial Growth Medium (EGM-2) was prepared by mixing the contents of an EGM-2 Bullet Kit (Cat. no. CC-4176) with Endothelial Basal Medium (Lonza). The EGM-2 Bullet Kit contains hydrocortisone, human fibroblast growth factor, VEGF, R3-insulin like growth factor (R3-IGF-1), ascorbic acid, human epidermal growth factor, gentamycin, and heparin along with 2% FBS. HRECs and proprietary Attachment Factor were purchased from Cell Systems. HRECs were used for cell proliferation studies between passages 5 and 7.

The base of a tissue culture flask (10 cm²) was washed with 1 mL of attachment factors and aspirated. Cryopreserved cells were removed from liquid nitrogen storage and defrosted just prior to use. Cells were transferred into EGM-2 media (5 mL), which was then centrifuged (2 min, 270 ¥ g). The liquid above the cell pellet was aspirated off, and the cell pellet was resuspended in 10 mL EGM-2 and transferred into the flask. The tube was then in-

Table 1 ^1H and ^13C NMR data for compounds 5 and 6 (CDCl₃).

<table>
<thead>
<tr>
<th>No.</th>
<th>δC</th>
<th>δH (J in Hz)</th>
<th>δC</th>
<th>δH (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.3</td>
<td>1.21 m, 1.80 m</td>
<td>34.8</td>
<td>1.25 m, 1.79 m</td>
</tr>
<tr>
<td>2</td>
<td>28.3</td>
<td>1.30 m</td>
<td>35.8</td>
<td>1.75, 1.25</td>
</tr>
<tr>
<td>3</td>
<td>80.7</td>
<td>3.50 dd (6.0, 12.2)</td>
<td>213.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>43.5</td>
<td></td>
<td>48.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>51.2</td>
<td>1.20 m</td>
<td>45.3</td>
<td>1.80 m</td>
</tr>
<tr>
<td>6</td>
<td>18.6</td>
<td>1.50 m, 1.80 m</td>
<td>19.5</td>
<td>1.5 m, 1.8 m</td>
</tr>
<tr>
<td>7</td>
<td>26.4</td>
<td>1.90 m</td>
<td>26.3</td>
<td>2.05 m</td>
</tr>
<tr>
<td>8</td>
<td>134.7</td>
<td></td>
<td>133.5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>134.6</td>
<td></td>
<td>135.4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>37.4</td>
<td></td>
<td>36.9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20.6</td>
<td>1.99 m, 2.13 m</td>
<td>20.5</td>
<td>1.94, 2.05</td>
</tr>
<tr>
<td>12</td>
<td>24.9</td>
<td>2.23 m, 1.55 m</td>
<td>24.7</td>
<td>1.5, 2.0 m</td>
</tr>
<tr>
<td>13</td>
<td>49.6</td>
<td></td>
<td>46.7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>50.6</td>
<td></td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>32.0</td>
<td>α 1.35 m</td>
<td>β 1.75 m</td>
<td>31.3</td>
</tr>
<tr>
<td>16</td>
<td>37.7</td>
<td>α 1.85 dd (5.6, 13.4)</td>
<td>β 2.80 dd (9.1, 13.4)</td>
<td>36.9</td>
</tr>
<tr>
<td>17</td>
<td>99.4</td>
<td></td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19.6</td>
<td>0.94 s</td>
<td>18.6</td>
<td>0.90 s</td>
</tr>
<tr>
<td>19</td>
<td>19.8</td>
<td>0.96 s</td>
<td>19.5</td>
<td>0.98 s</td>
</tr>
<tr>
<td>20</td>
<td>50.3</td>
<td>2.30 m</td>
<td>43.7</td>
<td>2.25 m</td>
</tr>
<tr>
<td>21</td>
<td>15.5</td>
<td>1.31 d (6.8)</td>
<td>18.6</td>
<td>1.05 d (6.8)</td>
</tr>
<tr>
<td>22</td>
<td>84.0</td>
<td>3.99 bs (W1/2 = 5.4)</td>
<td>32.3</td>
<td>α 1.80 m</td>
</tr>
<tr>
<td>23</td>
<td>115.5</td>
<td></td>
<td>113.6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>42.0</td>
<td>α 2.45 dd (4.5, 7.8, 8.0)</td>
<td>β 2.10 dd (7.8, 8.0)</td>
<td>45.2</td>
</tr>
<tr>
<td>25</td>
<td>35.5</td>
<td>2.70 m</td>
<td>35.8</td>
<td>2.97 m</td>
</tr>
<tr>
<td>26</td>
<td>16.5</td>
<td>1.39 d (7.4)</td>
<td>15.1</td>
<td>1.28 d (7.0)</td>
</tr>
<tr>
<td>27</td>
<td>178.8</td>
<td></td>
<td>179.6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>22.2</td>
<td>1.25 s</td>
<td>63.4</td>
<td>α 4.10 d (12.5)</td>
</tr>
<tr>
<td>29</td>
<td>64.3</td>
<td>α 3.36 d (11.2)</td>
<td>β 4.27 d (11.2)</td>
<td>70.7</td>
</tr>
<tr>
<td>30</td>
<td>26.0</td>
<td>2.24 s</td>
<td>24.7</td>
<td>1.05 s</td>
</tr>
</tbody>
</table>
incubated overnight (37°C, 5% CO2) until cells reached confluence. Medium was aspirated and the cells were washed with PBS (3 mL). PBS was aspirated and 500 μL TrypLE (Life Technologies) added and coated over the surface of the cells for a maximum of 30 s. Trypsin was then aspirated and EGM-2 medium (2 mL) was added to the tube to wash cells from the surface. The resulting cell slurry was transferred to a Falcon tube (15 mL) and diluted with sufficient EGM-2 to seed approximately 2500 cells per well.

The required 2500 cells/well in 100 μL medium were incubated in the center 48 wells of a 96-well clear bottom black plates for 24 h, with the surrounding 48 wells containing 100 μL deionized, sterilized water. Standard 1:10 dilutions of compounds in DMSO ranged from 100 mM to 100 nM such that seven concentrations of each compound were tested and the eighth and final well for testing containing DMSO as a control. Cells were treated with 1 μL of different concentrations of each test compound and control, resulting in a final in-well concentration range of 1 nM to 1 µM with a final DMSO concentration of 1% in all wells. All controls were treated in triplicate, and our previously reported synthetic, antiangiogenic homoisoflavonoid SH-11037 [19] was included as a positive control. Treated cells were incubated for a further 48-h period.

At the end of this incubation period, AlamarBlue reagent (11.1 μL) was added, and after 4 h of incubation, fluorescence readings were taken with excitation and emission wavelengths of 560 nm and 590 nm, respectively. Data were analyzed and dose response curves generated using GraphPad Prism (Section 35, Supporting Information).

In vitro angiogenesis assay

A Matrigel-based tube formation assay was performed as previously described [34]. Briefly, 50 μL Matrigel was allowed to solidify in a 96-well black, clear-bottom plate at 37 °C for 20 min. HRECs were added to the solid Matrigel at 15000 cells/well in 100 μL EGM-2 and dosed with appropriate concentrations of compound with 1 μL DMSO/well. Tube formation was observed every 2 h by brightfield microscopy, and images were taken after 8 h of tube formation. Six images per treatment were analyzed with AngiogenesisAnalyzer plugin for ImageJ [35], and HREC total tube length for treated cells was normalized to DMSO. Statistical analysis was completed using GraphPad Prism.

Supporting Information

Photographs of plant material (15), spectra for compounds 5, 6, 8, and 10 (25), and results of HREC cell proliferation studies (35) are available as Supporting Information.

Acknowledgements

S. Schwikkard would like to thank the Daphne Jackson Trust, the Royal Society of Chemistry, and the University of Surrey for supporting this work. H. Whitmore acknowledges a University of Surrey PhD Scholarship. We thank P. Cumbleton, C. Wells, and C. Smith and Wisley Gardens for providing plant material for this investigation. We thank Dr. C. Costa for providing mass spectra using the DAPNE-IBA instrument funded under the EPSRC EP/P001440/1 grant. T.W. Corson was supported by NIH/NEI R01EY025641 and an unrestricted grant from Research to Prevent Blindness, Inc.

Conflict of Interest

The authors declare there is no conflict of interest.

References

