Introduction

Herbal medicine has been used for centuries to cure illness and to improve quality of life. The practice of herbal medicine continues to be important in the culture of communities across the globe. An estimated four billion people living in developing countries (80% of the world’s population) depend upon herbal medicine as a primary healthcare source [1]. The use of herbal medicine in highly developed countries has increased in recent years as healthcare costs rise. Individuals have begun to self-medicate with herbal supplements, complement their traditional practices, or utilize alternative practices such as Chinese herbal medicine, Ayurvedic medicine, and homeopathy [2].

In the 1990s, herbal medical drugs represented 40% of all healthcare services delivered in China. In other countries, an estimated 48% (Australia), 70% (Canada), 42% (USA), 38% (Belgium), and 75% (France) of each respective nation’s population had used herbal drugs at least once [1]. In a 2007 NHIS report, almost 40% of adults surveyed had used alternative medical therapy in the past year. Survey results showed that alternative medicine was commonly used to treat back pain, head or chest colds, neck pain, joint pain, anxiety, or depression. The most commonly used alternative medical therapy was consuming “nonvitamin, nonmineral, natural products”. Some of the most popular herbal products used were Echinacea, ginseng, Ginkgo, and saw palmetto [3]. These nonvitamin, nonmineral, natural products account for the majority of out-of-pocket expenses for alternative medicine.
the 2007 NHIS report, those who use alternative medicine spent $14.8 billion on these products [4].

In the USA, sales have increased by $6 billion between 2007 and 2012. Furthermore, the botanical dietary supplement market in the USA is expected to increase further in worth by 2020 as disease prevention and healthier living becomes a top concern for many Americans [5].

This industry is regulated to a limited extent in the USA. Congress passed the DSHEA of 1994 to amend the 1958 Food Additive Amendments of the Federal Food Drug and Cosmetic Act. Due to this act of legislation, many dietary supplements contain ingredients not recognized by DSHEA as a traditional nutrient, thus, allowing dietary supplement manufacturers to bypass FDA regulations [2].

Before new drugs and food additives are released on to the market, they must undergo lengthy, rigorous testing to prove product safety and efficacy. Product efficacy is investigated through human trials to demonstrate that the product will have the claimed effect on its label. These tests, along with the expense of applying to the FDA, are quite costly, and this cost presents itself to the customer at the retail counter. Botanical dietary supplement manufacturers are not mandated to undergo FDA testing; thus, this is a cost saving to the manufacturer and customer. Botanical supplements are generally much less expensive than Western medicine, providing another reason for botanical dietary supplements to be an attractive alternative or complement to Western medicine.

However, in 2011, the FSMA was passed and raised the safety standards for new ingredients in dietary supplements. Dietary supplement manufacturers must notify the FDA in advance when a new dietary ingredient will be included in a product. Dietary supplement manufacturers must now provide evidence of safety of any new dietary ingredients in order to prevent consumer health from being put at risk [6].

Although supplement manufacturers are not mandated to undergo FDA testing, manufacturers are recommended to provide scientific evidence to support any claims made in product labeling and advertisements. Since DSHEA was passed in 1994, the FDA has identified problems with supplements, and manufacturers have warned about and recalled possible harmful products [2], such as Aristolochia and comfrey. In 2004, botanical supplements containing ephedrine alkaloids were banned by the FDA due to the increased risk of stroke, heart attack, and death [7].

Furthermore, the FDA has also issued advisories on entire families of dietary supplements containing specific active ingredients. For example, the FDA issued an advisory in 2014 warning all manufacturers of supplements containing comfrey, a plant discussed in this literature, to remove this ingredient from their products. According to the FDA, the pyrrolizidine alkaloids within the herb show substantial evidence for hepatotoxicity and therefore are unsafe for ingestion [8]. This advisory proves the necessity for research and literary review in identifying hazardous dietary supplement ingredients that may call the FDA to attention and implement reform to their distribution.

Despite this increased risk, the general public, both in the USA and across the world, views herbal medicine as a natural approach to healing. Many assume these natural products are not toxic, and do not consider the possible adverse effects of improper use and unrestrained intake. Some of the botanical supplements used as herbal medicine are derived from plants not typically used for human consumption. Therefore, the safety and efficacy of these plants remain untested. For example, saw palmetto extracts have been shown to improve male urological symptoms with low adverse events compared to the prescription drug finasteride used to treat these symptoms. However, the long-term effects and overall effectiveness have yet to be determined [2]. Additionally, the increase in herbal product usage in populations that also have ready access to conventional medicines (drugs) and polypharmacy warrants more consideration of the potential for herb-drug interactions [9].

The lack of information among botanical dietary supplement manufacturers coupled with the general public’s lack of risk awareness can lead to the development of severe poisoning and acute health problems in herbal medicine users [1].

In this literature review, we have compiled 49 known toxic compounds present in 53 different plant species belonging to 39 plant families with various adverse effects such as hepatotoxicity, cardiovascular toxicity, and central nervous system effects. The purpose of this review is to provide a succinct summary of known toxicity levels, usage limits, and possible health risks associated with medicinal plants and extracts derived from plants ranging across the entire herbal supplement market. Furthermore, the potential toxicity levels have been investigated for the top ten botanical dietary supplements available to consumers in the USA in order to more accurately gauge the public consumer’s exposure to these toxicities. As more toxic compounds in herbal medicine undergo testing and more data becomes available through academic research, supplement manufacturers can make safer products, and the general public can make more informed health decisions.
Methods

To compile this literature review, PubMed, EBSCO, and SciFinder (► Table 1) were primarily used to conduct searches about toxicity levels of plant compounds found within botanical dietary supplements and herbal drugs. Various search terms such as “toxic plant compounds”, “herbal supplement adverse effects”, “plant compound adverse effects”, “toxic herbal medicine”, “toxic botanical supplements”, and “toxic alternative medicine” were used to maximize results. Furthermore, the scientific names of the top ten botanical dietary supplements on the market were paired with these terms to investigate the potential toxicity of products most frequently consumed by the public. These include: Curcuma longa, Triticum aestivum, Linum usitatissimum, Aloe barbadensis, Sambucus nigra, Silybum marianum, Lepidium meyenii, Withania somnifera, Echinacea spp., and Serenoa repens [10]. If another source suggested that a specific plant species or plant compound had possible toxicity, PubMed was utilized to verify the claim by searching “(suggested plant or compound) AND toxic”. If several journal articles corroborated the claim, the plant compound was included in the review. The majority of sources were derived from articles published in the past ten years (since 2007), while one source was published in 1984 and another source was published in 1976.

For a plant compound to be included in the review, these four elements were considered vital:

- An identifiable compound within the plant species or botanical dietary supplement that has been connected to the toxic effects observed
- The identity of the plant family and species from which the toxic compound originates
- The amount of the plant compound/plant species/botanical dietary supplement that was consumed when the toxic effects were observed
- A description of the toxic effects observed

Many articles lacked one or more of the elements described above. When this occurred, attempts were made to find the missing information through other database searches and using plant toxicology reference books to identify compounds and their levels in plant species. Several sources, however, had to be excluded from the study due to lack of compliance to at least one of the aforementioned criteria.

Secondary sources for this literature review included plant toxicology textbooks, reports from U.S. and European federal agencies, and databases such as NAPRALERT. Two tables have been created from the sources accumulated from this review to organize the information resulting from the aforementioned searches: one table detailing the potential toxicity levels from adverse events of the top ten most sold botanical dietary supplements on the US market, and another table detailing the information obtained from sources regarding the toxicity of plant compounds across the botanical supplement market (► Tables 2 and 3, respectively).

Results

The possible toxic compounds were placed into categories based upon their effects. The most common effect was hepatotoxicity (15 compounds) followed by cardiovascular toxicity (12 compounds), digestive system toxicity (5 compounds), nervous system toxicity (6 compounds), renal toxicity (4 compounds), reproductive toxicity (3 compounds), endocrine toxicity (1 compound), and dermatological toxicity (1 compound) (► Tables 2 and 3). Twenty-three human trials and twenty-seven animal studies were accumulated in this search.

Plants and plant constituents associated with hepatotoxicity

The fifteen compounds known to be hepatotoxic are present in 20 plant species and 16 plant families. The anthraquinone emodin was found to be the most toxic of these compounds. Emodin is present in Frangula alnus Mill., a member of the Rhamnaceae family, and A. barbadensis Miller, commonly called aloe vera, a member of the Asphodelaceae family. Hepatocyte viability decreased by 30–45% when mice were orally given 40 and 80 µM of pure emodin extract for 24 h [11]. Clinical reports of acute toxic hepatitis in humans have been reported [12–14]. Although, two research teams suspect that a hypersensitive immune response is responsible for the induction of hepatitis due to the patients’ elevated levels of eosinophils [12,14]. However, one clinical case study detailed a woman’s development of hepatitis after orally consuming 500 mg of aloe vera leaf powder every 2–3 days for 5 years. After being admitted to the hospital and stopping the consumption aloe vera, her liver function returned to normal [12].

Overconsumption of emodin has been shown to elevate liver enzyme concentrations along with other adverse effects, such as seizures, nephritis, gastrointestinal hemorrhage, and dyspnea. However, the genus Senna contains emodin, and a maximum daily oral intake has been established for senna-based products at 34.4 mg [15]. In vitro studies suggest that emodin significantly inhibits critical pathways in these cells, such as Toll-like receptors, MAPK, and NF-κB pathways [16].

According to the National Center for Complementary and Integrative Health [17], Ginkgo biloba L. of the Ginkgoaceae family, and commonly known as ginkgo, has not been linked to liver injury. Sometimes, ginkgo has even been used to treat various forms of liver injury. As stated previously, ginkgo can inhibit liver
<table>
<thead>
<tr>
<th>Compound name and structure</th>
<th>Plant name/family</th>
<th>Plant part</th>
<th>Sample type/route of administration/dosage/ % of constituents</th>
<th>Test organism</th>
<th>Side effects</th>
<th>Toxicity category</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthraquinones</td>
<td>Aloe barbadensis Miller/Asphodelaceae</td>
<td>whole leaf</td>
<td>extract/oral/100 mg/kg rat</td>
<td>reproductive toxicity, significant sperm damage, inflammation, mortality, diarrhea, vomiting/contact dermatitis</td>
<td>dermal, reproductive, digestive</td>
<td>[11–14, 62]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>extract/oral human/rat</td>
<td>with diarrhea, hypokalemia, pseudomelanosis coli, kidney failure as well as phototoxicity and hypersensitive reactions, carcinogenic reaction in rats</td>
<td>renal, digestive</td>
<td>[62]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>emodin only extract/oral/0.7 % aloin/200 mg/kg</td>
<td>nonneoplastic lesions in the colon, intestinal tumors</td>
<td>digestive</td>
<td>[62]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lepidium meyenii Walp/Brassicaceae</td>
<td>root</td>
<td>powdered extract/oral human</td>
<td>craving behavior, which is common in addictions, altered menstrual cycles, moodiness, cramps, gastritis, insomnia</td>
<td>hepatoxic, digestive, neurological</td>
<td>[69, 70]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hypocotyls</td>
<td>500 mg hard gel capsules gelatinized powder/oral 2.0–3.5 g/day 1–3 months human</td>
<td>Budd-Chiari syndrome, attention disturbances, weight loss, agitation, abdominal pain, epistaxis, gingival bleeding, headache, nausea, vomiting, abnormal liver function and estrogen functions such as endometriosis and breast cancer</td>
<td>digestive, reproductive, nervous system</td>
<td>[70]</td>
<td></td>
</tr>
<tr>
<td>Possibly ar-turmerone, α-turmerone and β-turmerone</td>
<td>Curcuma longa L./Zingiberaceae</td>
<td>turmeric essential oil</td>
<td>oral/2.8 mg/kg/d/66% rat</td>
<td>elevations in serum alanine aminotransferase (ALT)</td>
<td>hepatotoxic, circulatory</td>
<td>[40]</td>
<td></td>
</tr>
<tr>
<td>Cyanogen glycosides</td>
<td>Sambucus nigra L./Adoxaceae</td>
<td>leaves, bark, stems, unripe berries</td>
<td>juice concentrate or juice (aqueous) extract/oral/11–12 g daily 4–5 days, OR 4 tablespoons a day</td>
<td>acute toxicity events, including reported nausea, vomiting, abdominal cramps, plus weakness, dizziness and numbness; stupor</td>
<td>digestive, neurological</td>
<td>[68]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Withania somnifera (L.) Dunal/Solanaceae nightshade</td>
<td>whole plant</td>
<td>WS 250 mg and 500 mg capsules (Rx) (aqueous extract, 8:1) daily/oral/750 mg/day for 3 days</td>
<td>increased appetite, libido, and hallucinogenic effects with vertigo</td>
<td>neurological</td>
<td>[41]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>aqueous extract</td>
<td>platform combination-based formulations/oral/330–440 mg daily for 6 weeks/10.80%</td>
<td>Mild gut-related (mostly epigastric burning) AE was reported. A mild increase in liver enzymes [serum glutamic pyruvate transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT)]</td>
<td>digestive, hepatoxic</td>
<td>[41]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>aqueous extract</td>
<td>human/mice/rats</td>
<td>accidental consumption of high concentration TEG resulted in coma and metabolic acidosis.</td>
<td>hematological/nervous system/fetal</td>
<td>[78]</td>
<td></td>
</tr>
</tbody>
</table>

*Information was obtained directly from the sources cited in the manuscript, and the source in the manuscript corresponds to that in the table. Pertinent information on all compounds (organized alphabetically) are provided.
Table 3: Common toxicity reports across the botanical supplement market in the US**.

<table>
<thead>
<tr>
<th>Compound name and structure</th>
<th>Plant name/family</th>
<th>Plant part</th>
<th>Sample type/route of administration/dosage/% of constituents</th>
<th>Test organism</th>
<th>Side effects presented</th>
<th>Toxicity category</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aconitine</td>
<td>Aconitum carmichaeli Debx.</td>
<td>prepared main root and lateral root</td>
<td>root is “prepared” (processed by boiling herb for several hours); poisoning has occurred when the dried herb was consumed or the herb was not boiled long enough; overdose/oral/lethal dose in humans is between 3–6 mg; reports of severe poisoning from 0.2 mg to 6 g (pure aconitine)</td>
<td>case study</td>
<td>poisoning, nausea, vomiting, numbness, irregular heartbeat, cold extremities</td>
<td>cardiovascular</td>
<td>[48]</td>
</tr>
<tr>
<td>Aconitum pendulum N. B. Sch.</td>
<td>Ranunculaceae</td>
<td>taken as raw plant or used in medicinal wine/oral/</td>
<td>estimated lethal dose is 2 mg (pure aconitine);1 g of the raw aconite plant or 5 mL of medicinal wine</td>
<td>case study</td>
<td>heart arrest due to its effects on voltage-gated sodium channels</td>
<td>cardiovascular</td>
<td>[48]</td>
</tr>
<tr>
<td>Aristolochic acid I</td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>combination of aristolochic acid I and II/oral/</td>
<td>rat/mice</td>
<td>renal effects: severe proximal tubule (PT) cells necrosis</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>combination of aristolochic acid I and II/oral/0.2; 1.0; 5.0, or 25 mg kg-1 day-1 for 28 days/77% AAI</td>
<td>rat/mice</td>
<td>renal effects: proteinuria and glucosuria. PT cells atypia, mild necrosis at highest dosage</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>combination of aristolochic acid I and II/oral/10, 50, or 100 mg kg-1 once/77% AAI</td>
<td>rat</td>
<td>renal effects: at 100 mg, proteinuria, mitosis, and necrosis of PT</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>combination of aristolochic acid I and II/oral/2.5 mg kg-1 day-1, 5 days a week for 14 days/55% AAI</td>
<td>rat</td>
<td>renal effects: glucosuria, proteinuria, proximal tubule injury, mononuclear cells infiltration, interstitial fibrosis</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>combination of aristolochic acid I and II/oral/0.1 mg kg-1 day-1, 5 days a week for 17-21 months/44% AAI</td>
<td>mice</td>
<td>renal effects: glucosuria and low molecular weight proteinuria; renal hypocellular interstitial fibrosis</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td>Aristolochic acid II</td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>oral/10, 50, or 100 mg kg-1 once/21% AAI</td>
<td>rat</td>
<td>renal effects: at 100 mg, proteinuria, mitosis, and necrosis of PT</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>root extract</td>
<td>oral/2.5 mg kg-1 day-1, 5 days a week for 14 days/45% AAI</td>
<td>rat</td>
<td>renal effects: glucosuria, proteinuria, proximal tubule injury, mononuclear cells infiltration, and interstitial fibrosis</td>
<td>renal</td>
<td>[81–83]</td>
</tr>
<tr>
<td></td>
<td>Aristolochia fangchi Y. C. Wuex</td>
<td>dried flowers and brewed into tea/oral/max limit of daily intake set at 3 mg/person (max duration is 2 weeks)</td>
<td>case study</td>
<td>seizures, neurotoxicity</td>
<td>nervous system</td>
<td>[57]</td>
<td></td>
</tr>
<tr>
<td>Caffeine</td>
<td>Paullinia cupana Kunth</td>
<td>oral/200 mg overnight while fasting</td>
<td>case study</td>
<td>high blood pressure and slowed metabolic clearance with oral contraceptives</td>
<td>cardiovascular</td>
<td>[60]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paullinia cupana Kunth</td>
<td>oral/2.5–7% caffeine/200 mg/dose, as much as 1800 mg</td>
<td>case study</td>
<td></td>
<td>nervous system</td>
<td>[75]</td>
<td></td>
</tr>
<tr>
<td>Cathinone</td>
<td>Catha edulis Forsk</td>
<td>leaves</td>
<td>fresh khat leaves/oral/lethal dose/21 mg/kg and 51 mg/kg</td>
<td>human</td>
<td>elevated liver enzymes and aminotransferase levels</td>
<td>hepatic</td>
<td>[34]</td>
</tr>
</tbody>
</table>
| | Catha edulis Forsk | leaves | fresh leaves/oral/1 week of daily use of 400 g | human | inhibits human CYP2D6 enzyme activity and marginal effect on CYP3A4 | hepatic | [34] | cont.
<table>
<thead>
<tr>
<th>Compound name and structure</th>
<th>Plant name/family</th>
<th>Plant part</th>
<th>Sample type/route of administration/dosage/% of constituents</th>
<th>Test organism</th>
<th>Side effects presented</th>
<th>Toxicity category</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caulosaponin</td>
<td>Caulophyllum thalictroides (L.) Michaux/ Berberidaceae</td>
<td>oral/9.5 g/kg</td>
<td>rat</td>
<td>increased activity, ataxia, and clonic seizures nervous system</td>
<td>[72]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelidonine</td>
<td>Chelidonium majus L/ Papaveraceae</td>
<td>oral</td>
<td>case studies</td>
<td>hepatitis hepatic</td>
<td>[27–29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitoxigenin</td>
<td>Nerium oleander L., N. indicaum L., and N. odorum L./Apocynaceae</td>
<td>leaves</td>
<td>10–20 leaves; estimated oleander leaf dose to be 4 g</td>
<td>case study; 21 y.o. female</td>
<td>confusion, flushing, diarrhea, and hypokalemia circulatory</td>
<td>[52–54]</td>
<td></td>
</tr>
<tr>
<td>Emodin</td>
<td>Aloe barbadensis Miller, Frangula alnus Miller/Asphodelaceae</td>
<td>nondecolorized whole leaf extract</td>
<td>whole nondecolorized extract/oral/given either 0, 500, 1000, 1500 ppm extract (in drinking water)/emodin content: 70.5 ± 4.5 µg/g</td>
<td>rat</td>
<td>dose-related increase in mucosal hyperplasia in large intestine, nonneoplastic lesions in large intestine and mesenteric lymph nodes digestive</td>
<td>[62]</td>
<td></td>
</tr>
<tr>
<td>Frangula alnus Mill./ Rhamnaceae</td>
<td></td>
<td>pure emodin</td>
<td>40 and 80 µM for 24 h</td>
<td>mice</td>
<td>30–45% decreased hepatocyte viability hepatic</td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>Ephedrine</td>
<td>Ephedra sinica Stapf./ Ephedraceae</td>
<td>Ripped Force</td>
<td>18-oz. drink/oral/20 mg of ephedra alkaloids, along with 100 mg of caffeine, 250 mg of l-carnitine, and 240 µg of chromium, 2–3 times/day</td>
<td>case study</td>
<td>cardiac arrest cardiovascular</td>
<td>[47]</td>
<td></td>
</tr>
<tr>
<td>Flavocoxid</td>
<td>baicalin from Scutellaria baicalensis Georgi / Lamiaceae</td>
<td>Limbrel/250–500 mg twice daily</td>
<td>human</td>
<td>bilirubin and liver enzymes become elevated hepatic</td>
<td>[33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavocoxid</td>
<td>catechins from Acacia catechu (L. f.) Willd./Le- guminosae</td>
<td>Limbrel/250–500 mg twice daily</td>
<td>human</td>
<td>bilirubin and liver enzymes become elevated hepatic</td>
<td>[33]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavocoxid</td>
<td>baicalin from Scutellaria baicalensis Georgi / Lamiaceae</td>
<td>extract</td>
<td>oral/5 g/kg for 8 weeks</td>
<td>dog</td>
<td>loose stool, diarrhea, discomfort digestive</td>
<td>[65]</td>
<td></td>
</tr>
<tr>
<td>Compound name and structure</td>
<td>Plant name/family</td>
<td>Plant part</td>
<td>Sample type/route of administration/dosage/% of constituents</td>
<td>Test organism</td>
<td>Side effects presented</td>
<td>Toxicity category</td>
<td>Ref.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Folinerin</td>
<td>Nerium oleander L., N. indicum L., and N. odorum L./Apocynaceae</td>
<td>leaves</td>
<td>10–20 leaves; estimated oleander leaf dose to be 4 g</td>
<td>case study; 21 y. o. female</td>
<td>confusion, flushing, diarrhea, and hypokalemia</td>
<td>circulatory</td>
<td>[52–54]</td>
</tr>
<tr>
<td>Helenalin</td>
<td>Arnica montana L./Compositae</td>
<td>dried flower</td>
<td>Absinthii herba/oral/5 mg/person (max duration is 2 weeks)</td>
<td>human clinical trials</td>
<td>tachycardia, watery emesis, and epigastric tenderness</td>
<td>cardiovascular</td>
<td>[59]</td>
</tr>
<tr>
<td>Linamarin</td>
<td>Manihot esculenta Crantz/Euphorbiaceae</td>
<td>root</td>
<td>centrifuged cassava juice/expected to release 10–8 mg HCN/kg cooked food/given 100 g diet/kg body weight of gari</td>
<td>dog</td>
<td>generalized congestion and hemorrhage, periportal vacuolation of liver, swelling, vacuolation and rupture of epithelial cells of the PCT of kidney, myocardial degeneration and adrenal gland degeneration; in testes, there were occasional abnormal germ cells in the seminiferous tubules</td>
<td>hepatic</td>
<td>[37]</td>
</tr>
<tr>
<td>Lobeline</td>
<td>Lobelia inflata L./Campanulaceae</td>
<td>leaves and seeds</td>
<td>oral/8 mg* usually present in amounts of 1.0 mg per unit dosage form*</td>
<td>human case studies</td>
<td>nausea and epigastric pain</td>
<td>digestive</td>
<td>[66]</td>
</tr>
<tr>
<td>Menthofuran</td>
<td>Mentha pulegium L. or Hedkoma pulegioides L./Labiatae</td>
<td>pennyroyal essential oil/oral/10 ml or less</td>
<td>rat</td>
<td>produces gastritis</td>
<td>digestive</td>
<td>[31]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oral/15 ml or more</td>
<td>case studies</td>
<td>can lead to death</td>
<td>hepatic</td>
<td>[31]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oral/30 ml or more</td>
<td>case studies</td>
<td>known to cause chemical hepatitis, leading to liver dysfunction, renal failure, seizures, and death</td>
<td>hepatic</td>
<td>[31]</td>
<td></td>
</tr>
<tr>
<td>Menthol</td>
<td>Mentha piperita L./Lamiaceae</td>
<td>peppermint leaf essential oil</td>
<td>essential oil/oral/over 40 drops</td>
<td>case study</td>
<td>chemical burn of oral cavity and pharynx with tachycardia, tachypnea, and edema of the lips, tongue, and uvula</td>
<td>dermal</td>
<td>[79]</td>
</tr>
<tr>
<td>N-methyltyramine</td>
<td>Citrus aurantium L./ Rutaceae</td>
<td>Bitter Orange extract/oral/300 mg produced an acute myocardial infarction/varies from 1% to 30% in products/386 ppm of cyanogenic glycosides</td>
<td>case study</td>
<td>vasoconstriction and spasms in the coronary arteries, increasing heart rate and blood pressure</td>
<td>cardiovascular</td>
<td>[58]</td>
<td></td>
</tr>
<tr>
<td>Nerine</td>
<td>Nerium oleander L., N. indicum L., and N. odorum L./Apocynaceae</td>
<td>leaves</td>
<td>10–20 leaves; estimated oleander leaf dose to be 4 g</td>
<td>case study; 21 y. o. female</td>
<td>confusion, flushing, diarrhea, and hypokalemia</td>
<td>circulatory</td>
<td>[52–54]</td>
</tr>
</tbody>
</table>

Table 3 Continued
<table>
<thead>
<tr>
<th>Compound name and structure</th>
<th>Plant name/family</th>
<th>Plant part</th>
<th>Sample type/route of administration/dosage/% of constituents</th>
<th>Test organism</th>
<th>Side effects presented</th>
<th>Toxicity category</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordihydroguaiaretic acid (NDGA)</td>
<td>Larrea tridentata (Sessé & Moc. ex DC.) Coville/Zygophyllaceae</td>
<td>leaf</td>
<td>oral/LD: 0.8 g/kg/2 %</td>
<td>guinea pig</td>
<td>renal lesions observed after 3 weeks</td>
<td>renal</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oral/4% of extract</td>
<td>rat</td>
<td>growth retardation, irritability, aggressiveness, hypoplasia of testicles and accessory sex glands</td>
<td>reproductive</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hydroethanolic extract of chapparral/oral 0.5 or 1% of compound (for 74 wks)</td>
<td>hamster</td>
<td>cysts of mesenteric lymph nodes developed</td>
<td>digestive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDGA compound only/oral/0.5 % (for 2 yrs)</td>
<td>rat</td>
<td>growth inhibition observed after 6 mo, inflammatory cecal lesion and cyst enlargement after 2 yrs</td>
<td>digestive</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leaf</td>
<td>oral/0.3–6 g daily</td>
<td></td>
<td>toxic liver damage, jaundice</td>
<td>hepatic</td>
<td>[25]</td>
</tr>
<tr>
<td>Oleandrin</td>
<td>Nerium oleander L., N. indica L., and N. odoratum L./Apocynaceae</td>
<td>leaves</td>
<td>10–20 leaves; estimated oleander leaf dose to be 4 g</td>
<td>case study; 21 y. o. female</td>
<td>confusion, flushing, diarrhea, and hypokalemia</td>
<td>circulatory</td>
<td>[52–54]</td>
</tr>
<tr>
<td>Riddelliine/symphytine</td>
<td>Symphytum officinale L. Also present in: Liguaria dentata (A. Gray) H. Hara, Senecio scandens Buch.-Ham., Lithospermum erythrorizon Ziao Siebold & Zucc., Onosma paniculatum Bureau & Fran chet/Boraginaceae</td>
<td>leaf and root</td>
<td>oral/10 mg/kg (5 days a week for 13 wks)/oral/8, 16, or 33% (for 600 days) or 33% comfrey diet (for 480 days)</td>
<td>mice</td>
<td>liver tumors</td>
<td>hepatic</td>
<td>[19, 23]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>herb tea, comfrey pills</td>
<td>10 cups tea + additional pills (no quantity given)</td>
<td>female case study</td>
<td>hepatic veno-occlusive disease</td>
<td>hepatic</td>
<td>[21, 23]</td>
</tr>
<tr>
<td>Safrole</td>
<td>Sassafras albidum (Nutt.) Nees/Lauraceae</td>
<td>root</td>
<td>oral/fed oil as 0.117 % of diet or safrole as 0.039 % of diet for 2 years (68 yrs of human exposure)</td>
<td>rat</td>
<td>hepatocarcinomas, changes in kidneys, adrenals, thyroid, pituitary, and testes or ovaries</td>
<td>hepatic</td>
<td>[39]</td>
</tr>
<tr>
<td>Synephrine</td>
<td>Citrus aurantium L.</td>
<td>Bitter Orange extract/oral/300 mg produced an acute myocardial infarction</td>
<td>case study</td>
<td>increases blood pressure by increasing norepinephrine release</td>
<td>cardiovascular</td>
<td>[58]</td>
<td></td>
</tr>
<tr>
<td>Thujone</td>
<td>Artemisia absinthium L./Compositae, Salvia offici als L./Lamiaceae</td>
<td>leaf</td>
<td>sage leaf preparation/oral/15 mg</td>
<td>human clinical trials</td>
<td>facial redness, pupil dilation, increased heart rate, hallucinations, dry mouth, agitation</td>
<td>unsure how to specify</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leaf</td>
<td>25 or 50 mg/kg for 13 weeks, LD 2600 mg/kg</td>
<td>rats</td>
<td>seizures were observed</td>
<td></td>
<td>[71]</td>
</tr>
<tr>
<td>Usnic acid</td>
<td>Uncaria botrya (L.) F.H. Wigg/Parnelliaceae</td>
<td>usnic acid compound</td>
<td>oral/100–200 mg of usnic acid taken daily for 2 weeks</td>
<td>mice and rat</td>
<td>liver failure</td>
<td>hepatic</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>usnic acid compound</td>
<td>oral/500 mg of usnic acid taken daily for 2 weeks</td>
<td>case studies</td>
<td>liver failure</td>
<td>hepatic</td>
<td>[24]</td>
</tr>
<tr>
<td>Yohimbine</td>
<td>Pausinystalia yohimbe (K. Schum.) Pierre ex Belle/Rubiaceae</td>
<td>bark</td>
<td>prescription drug yohimbine hydrochloride/oral/ LD: doses over 43 mg</td>
<td>human clinical trials</td>
<td>increased mean arterial pressure and heart rate</td>
<td>cardiovascular</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yohimbine compound</td>
<td>oral/5 to 15 mg</td>
<td>human clinical trials</td>
<td>elicitiation of manic symptoms in bipolar disorder patients, lupus-like syndrome, and bronchospasm</td>
<td>circulatory</td>
<td>[57]</td>
</tr>
</tbody>
</table>

* Information was obtained directly from the sources cited in the manuscript, and the source in the manuscript corresponds to that in the table. Pertinent information on all compounds (organized alphabetically) are provided.
enzyme activity in vitro, but when consumed by humans, ginkgo
does not impact drug metabolism [18].

Pyrrolizidine alkaloids riddelline and symphytine are com-
ounds present in Symphytum officinale, commonly known as
comfrey. This plant species is a member of the Boraginaceae fam-
ily. When rats were orally given 10 mg/kg body weight for 5 days
per week for 13 weeks, the animals experienced hepatopathy
[19]. In one case study, a woman drank as much as 10 cups of
comfrey herb tea in one day, along with taking comfrey pills, and
developed hepatic veno-occlusive disease [20]. According to the
U.S. National Library of Medicine’s LiverTox database [21], cases
of acute liver injury have been reported, usually beginning after
1 to 2 months of consuming comfrey. However, the database
states comfrey hepatotoxicity is rare because consumption of
comfrey is restricted or banned in many countries due to the
knowledge of possible liver injury [21].

Pyrrolizidine alkaloids are also commonly found in the plants
Ligularia dentata, Senecio scandens, Lithospermum erythrorhizon,
and Onosma paniculatum. Because of the known liver toxicity
demonstrated by these plants, pyrrolizidine alkaloids are banned
in the USA and limited in Europe to 100 µg per day externally or
1 µg per day internally for no more than 6 weeks [22]. However,
the European Medical Agency’s Committee of Herbal Medical
Products [23] recommends a daily intake of no more than
0.35 µg per day to avoid the risk of long-term toxicity affects.

Usnic acid is a dibenzofuran derivative present in Usnea barbata
(L.) F. H. Wigg. of the Parmeliaceae family. Mice and rats were oral-
ly given 100 and 200 mg/kg body weight during a 2-week study.
These animals experienced liver toxicity. Human case studies have
shown that taking 500 mg of usnic acid for 2 weeks can induce
liver failure [24].

NDGA is an antioxidant compound present in Larrea tridentata
of the Zygophyllaceae family and is commonly known as creosote
bush. Human case reports suggest that consuming 0.3–6 g daily
of L. tridentata tablets can lead to toxic liver damage with jaundice.
In guinea pigs, a lethal oral dose of NDGA is 0.8 g/kg body weight
[25, 26].

The isoquinoline alkaloid chelidonine is present in Chelidonium
majus L. of the Papaveraceae family, also known as greater celan-
dine. The presentation of hepatitis after celandine use has been
mentioned in several human case studies [27–29].

Menthofuran is a compound present in pennroyal oil, derived
from Mentha pulegium or Hedeoma pulegioides of the family Labia-
tae. Rats were orally given 250 mg/kg of pennroyal oil once daily
for 3 days. These rats experienced hepatotoxicity [30]. Consump-
tion of 30 mL or more of pennroyal oil can cause hepatitis, lead-
ing to further liver dysfunction in humans [31].

Flavocoxid is a proprietary blend of baikalin and catechins. Bai-
calin is a compound from Scutellaria baicalensis (Lamiaceae) and
the catechins are from Acacia catechu (Leguminosae). Baicalin
has shown hepatoprotective activity in multiple animal and in vitro
experiments [32]. EGCG is present in green tea extract, and it is
believed that EGCG is responsible for hepatotoxicity attributed to
green tea extract. EGCG is also present in flavocoxid, and re-
searchers infer this catechin is responsible for liver injury caused
by flavocoxid as well [32]. Limbrel is a flavocoxid commercial
product derived from the bioflavonoids baikalin and catechins
that have been ground into tablets. When humans orally consume
250–500 mg of Limbrel twice daily, bilirubin and liver enzymes
become elevated [32].

When human participants orally consumed 400 g of Catha
edulis (khat) leaves (of the Celastraceae family) daily for a week (a
dose demonstrative of frequent use of the leaves as a supple-
ment), studies showed decreased activity of CYP2D6, a liver en-
zyme involved in metabolism [33]. The stimulant cathinone is a
monoamine alkaloid present in the leaves of khat. In other case
reports, toxic effects of khat use appear years later with elevated
liver enzymes and aminotransferase levels, indicating the pres-
ence of liver damage [34]. An Australian case report [34] suggests
that khat-associated hepatitis may be due to an autoimmune re-
sponse. Khat is native to East Africa, and according to one paper
[35], no khat-induced hepatitis has been reported. The toxicity
may be the result of contaminants used to preserve khat during
exportation, or hepatitis may be caused by individual abuse of
drugs and alcohol [35]. Notably, the legal restriction on khat dis-
btribution commercially in the USA may limit its use by the public
consumer [36]; however, improvised preparations and its use
elsewhere highlight it as a supplement for investigation in this re-
view.

Linamarin is a cyanogenic glucoside present in Manihot esculen-
ta (Euphorbiaceae), known as cassava. The plant is often con-
sumed in the West African food known as gari. Dogs were given
100 g/kg of gari over 14 weeks and liver vacuolation was observed
in the test subjects [37]. Cassava is known as a cause of nonalco-
holic chronic pancreatic disease in developing nations [38].

Safrole, an alkylbenzene, is a phenylpropene present in Sas-
safiras albidum (Lauraceae), commonly known as sassafras, and
Foeniculum vulgare, commonly known as fennel. Linamarin
has been used by the public primarily through sassafras essential oil.
In one study, rats consumed sassafras oil as 0.117% of their diet
or safrole as 0.039% of their diet for 2 years. Researchers calcu-
lated this would be the equivalent to humans consuming sassafras
oil/safrole for 68 years. Among many adverse effects observed,
hepatocarcinomas developed on the test subjects [39].

Alpha- and beta-turmerones are active compounds present in
the essential oil of C. longa (Zingiberaceae), commonly called tur-
meric. In a rat model study, oral administration of 2.8 mg/kg per
day resulted in elevated serum ALT in the liver, indicating the pres-
ence of liver damage [40].

W. somnifera, commonly known as ashwagandha and a mem-
ber of the nightshade family, is commonly used as an herbal sup-
plement in Ayurvedic medicine. In one clinical study, consump-
tion of 330–440 mg a day for 6 weeks resulted in mild epigastric
burning, as well as an increase in liver enzymes (SGPT and SGOT),
indicating hepatic distress [41].

Estragole is an alkylbenzene derived from F. vulgaris, com-
onomously known as fennel, of the Apiaceae family. Estragole has been
known to induce hepatomas in rodents at high doses. These tu-
mors are caused by the bioactivation by cytochrome P450s and
sulfotransferases, giving rise to the ultimate carcinogenic metab-
olite 1′-sulfooxyestragole, which forms DNA adducts [42]. Indeed,
in vitro studies of growing cell lines of human hepatomas have de-
termined that activation of CYP1A2 and CYP2A6 enzymes ulti-
ately lead to the formation of 1′-sulfooxyestragole, which is un-
stable in aqueous environment and whose carbocation formed in solution reacts easily with DNA in the liver [43]. The margin of exposure of alkenylbenzenes such as estragole and safrole to cytotoxicity due to fennel consumption was calculated at 1.9–15.8 mg per day to be less than 10, meaning that daily intake was enough to cause genotoxicity and carcinogenic events in experimental animals, indicating the risk to human health and priority for risk management [43, 44].

Plants and plant constituents associated with cardiovascular toxicity

The literature has indicated that 12 compounds are known to exhibit cardiovascular toxicity. These compounds belong to 12 plant species and 9 families.

Ephedrine is an alkaloid with a phenethylamine skeleton found in various plants within the genus Ephedra (Ephedraceae). Ephedrine is a bronchodilator used to prevent low blood pressure during spinal anesthesia. Ephedrine is also found in dietary supplements that promote short-term weight loss, but those are now illegal in the USA. However, in traditional Chinese medicines that contains ephedrine (ma-huang), it is legal.

The ephedrine quantity in dietary supplements taken orally is about 20 mg per serving, and doses are taken up to two to three times per day. It has been shown that labels of dietary supplements do not list ephedrine content, or incorrectly report the amount of ephedrine in these products [45].

Ephedrine has been associated with cardiovascular dysfunction such as myocardial infarction, severe hypertension, myocarditis, and lethal cardiac arrhythmias [46]. The typical dose of ephedrine used for bronchodilation is 25–50 mg, but ephedrine doses associated with adverse events were less than this amount.

Four selected case studies were featured in the Haller and Benowitz paper [47]. One patient consumed a dietary supplement (Shape-Fast Plus) for 1 week and suffered a subarachnoid hemorrhage. Shape-Fast Plus was taken as a capsule three times a day before meals for weight loss. Each capsule contained 12 mg of ephedra alkaloids, along with 40 mg of caffeine. Another patient suffered a hemorrhagic stroke 90 min after consuming Ultimate Orange, a drink containing 415 mg of ephedra alkaloids and caffeine. This patient had also run 3 miles before the hemorrhagic stroke occurred. The last two cases feature a dietary supplement known as Ripped Force. Both patients went into cardiac arrest. The first patient was on asthma medications (albuterol and theophylline) and had consumed an 18-oz. bottle of Ripped Force before cardiac arrest occurred. The patient was drinking up to three Ripped Force bottles a day for an undisclosed amount of time. Each 18-oz. drink contained 20 mg of ephedra alkaloids, 100 mg of caffeine, 250 mg of L-carnitine, and 240 µg of chromium. The interaction of the theophylline and albuterol medications with the caffeine and ephedra in Ripped Force caused an arrhythmia that induced cardiac arrest. The next patient had taken two Ripped Force capsules each morning for 1 year. Each capsule contains 10 mg of ephedrine and 100 mg of caffeine. After a 20-min jog and consuming Ripped Force capsules for 1 year, this patient collapsed suffering a cardiac arrest, resulting in death. A case study by Haller and Benowitz indicates that caffeine “enhances the cardiovascular and central nervous system effects of ephedrine” [47].

Aconitine is a toxic compound found in the genus Aconitum (Ranunculaceae). Aconitum carmichaeli Debx. is a plant commonly used in traditional Chinese medicine. The prepared main root is called chuán wú, and fu zì is the prepared lateral root. These roots are prepared by boiling this herb for several hours. Poisoning has occurred when either the unprepared dried herb was consumed, herbs were boiled for an insufficient amount of time, or patients overdosed [48]. The lethal oral dose of A. carmichaeli prepared roots for humans is estimated to be 3–6 mg. However, severe poisoning has been reported after consuming anywhere from 0.2 mg to 6 g orally. Poisoning symptoms include nausea, vomiting, numbness, irregular heartbeat, and cold extremities [48]. Aconitum pendulum Busch is a plant that is consumed either as a raw plant or contained in medicinal wine. The estimated human lethal dose of the raw aconite plant is 1 g or 5 mL of medicinal wine. Overdoses related to this plant induced heart arrest due to its effect on voltage-gated sodium channels. The changes in sodium channels have been linked to aconitine [48]. Furthermore, aconitine has been known to inhibit the binding of acetylcholine and epinephrine to cholinergic and adrenergic receptors, respectively, in cardiac muscle cells, which may contribute to arrhythmic heart contraction [49].

Strychnine is a toxic, crystalline alkaloid that is most commonly found in the seeds of Strychnos nux-vomica L. (Loganiaceae). Strychnine causes its toxicity by interfering "with post-synaptic inhibition mediated by glycine in the brain and spinal cord” [50]. Although strychnine is an ingredient in rodent poison, it is also used in Tibetan medicine and Chinese folk medicine. If 30–120 mg of strychnine are consumed, it can be deadly toxic. In certain instances, children have consumed less than 10 mg and adults have consumed less than 16 mg, resulting in fatalities [50]. In one fatal case study, a patient ingested taupicine, a mole poison that was 10% strychnine. The blood sample from the patient contained 0.29 µg/mL of strychnine [51]. In another case, a patient ingested three teaspoons of strychnine (along with 15 mg of methocarbamol), and 0.8 mg/L of strychnine was found in the patient’s blood sample. After ingesting strychnine, the patient exhibited tachycardia, hypertension, and intense muscle spasms [51].

Nerine, oleandrin, folinerin, and digitoxigenin are cardiac glycosides found in a number of plants that are commonly known as oleander, including Nerium oleander, Nerium indicum, and Nerium odoratum (Apocynaceae). These cardiac glycosides are found in all parts of the plant. A 21-year-old female consumed 10–20 N. oleander leaves, resulting in confusion, flushing, diarrhea, and hypokalemia. The treating physicians estimated the lethal dose of oleander leaves to be 4 g. They formulated this estimation from the assumed volume of distribution of the glycosides in oleander leaves (1 L/kg) and the calculated lethal dose absorbed by their patient [52, 53]. Case studies with similar results have been reported [52–54].

These cardiac glycosides work by inhibiting Na’/K’ ATPase pumps, causing an accumulation of intracellular sodium in myocytes. This increase in intracellular sodium inhibits the exchange of sodium and calcium, resulting in an increase of intracellular cal-
Caffeine derived from *Paullinia cupana*, commonly known as guarana of the Sapindaceae family, is an ingredient commonly used in energy drinks and beverages. In a clinical trial, eight healthy adults received a single dose of 200 mg caffeine after an overnight fast. After plasma and urine samples were obtained, and heart rate and blood pressure were monitored for 14 h, it was found that blood pressure increased significantly to a maximum of 14 mmHg. In addition, metabolic clearance was slowed in those patients taking oral contraceptives, indicating that drug-botanical interactions could pose a greater risk for toxicity due to caffeine [60]. In one study, active fractions from dried guarana seed extract used in soft drinks were subject to liquid-chromatography mass-spectroscopy and analyzed for content. It was suggested that complexes containing caffeine and catechins (and their dimers) might be responsible for antiplatelet aggregatory activity, which may be causing such a drastic increase in blood pressure [61].

Plants and plant constituents associated with toxicity to the digestive system

Five plant compounds and eight plant species from seven plant families were found to cause toxicity events.

Menthofuran, a compound mentioned previously in this review as hepatotoxic, has also been found to induce adverse effects on the digestive system. *M. pulegium* (Lamiaceae), naturally produces menthofuran. Menthofuran is found in many essential oils, including pennyroyal. Case studies have shown that ingesting 10 mL or less of pennyroyal oil can cause gastritis [31].

Emodin is another compound categorized as hepatotoxic, but has effects on the digestive system as well. This compound is found in *A. barbadensis* (Asphodelaceae), known as aloe vera. The National Toxicology Program conducted toxicity studies on various plant extracts. When rats were orally given aloe vera whole, nondecolorized extracts, a dose-related increase in mucosal hyperplasia in the large intestine occurred, while nonneoplastic lesions in the large intestine and mesenteric lymph nodes were also observed. The emodin content of the aloe whole leaf extract is estimated to be 70.5 µg/g. Researchers suggest the intestinal tumors developed due to the anthraquinone emodin being transformed into mutagenic components in the intestine. The recommended dose per day for humans is 0.43 mg/kg or about 10–30 mg/day [62]. According to the U.S. National Library of Medicine Toxicology Data Network, mild toxic overdoses of emodin can induce vomiting and diarrhea, but severe overdoses can result in gastrointestinal hemorrhage [15]. For example, in one experiment, oral administration of 100 mg/kg whole leaf aloe extract resulted in vomiting and diarrhea [63–64].

Scutellaria baicalensis, a member of the Lamiaceae family, is commonly known as Chinese skullcap. A 5 g/kg extract of Chinese skullcap was given to dogs over an 8-week period, and loose stool was observed as a result. Diarrhea and stomach discomfort have been observed in human case reports. Dose and preparation, unfortunately, were not reported [65].

NDGA is a compound that has been previously discussed in this paper for its hepatotoxic activity. When NDGA was isolated, it induced abnormalities in the gastrointestinal tract. Rats received an oral administration of NDGA extract for 74 weeks (0.5 or 1 % of the...
Hudson A et al. A Review of ... Planta Med 2018; 84: 613–626

extract was NDGA). After these administrations, mesenteric lymph node cysts developed in the test subjects. In another study, rats were given an extract (0.5% of the extract was NDGA) for 2 years. Following this time period, inflammatory cecal lesions and cyst enlargement occurred [25]. These findings correspond with reports of renal and hepatotoxicity in humans after long-term use of NDGA and its origin, L. tridentata [26].

Lobeline is an alkaloid found in Lobelia inflata, also known as “Indian tobacco”. L. inflata is a member of the Campanulaceae family. Lobeline is found in the leaves and seeds of this plant. When commercially sold, lobeline is present in a 1-mg per unit dosage. When humans consume 8 mg of lobeline, nausea and epigastric pain was reported [66]. Lobeline has been known as a ligand for nicotinic acetylcholine receptors that competitively inhibits acetylcholine binding to smooth muscle tissue to induce peristalsis [67].

Sambucus nigra, commonly known as European elderberry, comes from the Adoxaceae family. Elderberry leaves, bark, stems, and unripe berries are known to contain cyanogen glycosides, which commonly present toxic events in clinical cases and may present in Sambucol, a syrup product made from elderberry juice concentrate. Oral consumption in human cases at 11–12 g daily for 4–5 days, or 4 tablespoons a day, has resulted in reports of nausea, vomiting, abdominal cramps, weakness, dizziness, numbness, and stupor [68].

L. meyenii, commonly known as maca and is a member of the cabbage family, possess a root commonly ground or extracted for human consumption as a sexual and reproductive enhancing supplement. One active compound attributed to this altered sexual behavior and reported in toxicity and adverse events includes MTCA. Consumption of a powdered root extract containing MTCA has resulted in cramps and gastritis [69]. Furthermore, according to a literature review of clinical trials associated with maca, oral consumption of 2.0–3.5 g per day in the form of 500 mg hard gel powder extract tablets of maca primary leaves for 1 to 3 months resulted in weight loss, abdominal pain, nausea, and vomiting [70].

Plants and plant constituents associated with neurotoxicity

Six compounds from six species and six families were associated with neurotoxicity.

Thujone is a compound present in Artemisia absinthium (Compositae) and Salvia officinalis (Lamiaceae), commonly known as sage leaf. In 2012, the European Medicines Agency issued a statement about the safety of thujone in herbal medicinal products. The EMA concluded the maximum limit of daily oral intake for Absinthii herba was established at 3 mg/person and S. officinalis was limited to 5 mg/person. Both herbal products should only be used for 2 weeks maximum. The report assessed that low-dose exposure to thujone (3–7 mg/day) may be safe, but higher concentrations of thujone may pose a risk.

When rats consumed thujone in higher concentrations (concentrations of 25 or 50 and greater mg/kg for 13 weeks), seizures were observed. In other animal studies, rats were given various doses of sage essential oil. A lethal (oral) dose was determined to be 2600 mg/kg. When humans consume higher doses (15 mg), subtle changes in attention and mood were observed [71].

Caulosaponin is present in blue cohosh, Caulophyllum thalictroides (Berberidaceae). This compound has been isolated and a lethal dose has been determined. In neonates born to women who have taken blue cohosh, perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock have occurred. After orally consuming blue cohosh, patients experienced side effects including diarrhea, increased levels of blood pressure and blood glucose, and stomach cramps. These adverse events are believed to be caused by the toxic alkaloid methylcytisine [72,73]. A biochemical study of the constituents in blue cohosh revealed that all studied dietary supplements of blue cohosh contain N-methylcytisine [74].

The seeds and fruit of guarana (P. cupana, Sapindaceae) are often a source of caffeine for herbal supplements, as previously mentioned. In a case study, a weight loss supplement contained 2.5–7% caffeine (200 mg/dose). If patients choose to self-medicate and increase supplement usage, patients may consume as much as 1800 mg of caffeine [74]. The safety limit recommended by the FDA for daily caffeine consumption is only 400 mg, or the equivalent of four to five cups of coffee [75].

Linamarin, previously featured as a hepatotoxic compound of Manihot esculenta (Euphorbiaceae), has been associated with neurotoxicity in animals. In an animal study where cassava-fed animals were compared to control animals, cyanide-fed animals, and malnourished animals, researchers found motor coordination of the cassava-fed animals was similar to the other groups studied. However, the plasma thiocyanate concentration as well as urinary thiocyanate excretion and elevated urinary protein excretion for the cassava-fed animals differed from all other studied groups. Researchers concluded that neurotoxicity could be a result of linamarin [76]. Another study featuring Wistar rats corroborates these findings. After consuming doses of 0.075–0.3 mg of linamarin in 2 milliliters of cassava juice for 2 weeks, the test subjects experienced behavioral and locomotion deficiencies [77].

L. meyenii, or maca, has been previously mentioned for its digestive toxicity. Human consumption of the root extract has also been associated with a significant impact on neurological functions, resulting in side effects that include craving behavior, moodiness, and insomnia [69]. Consumption of the primary leaf extract in the form of hard gel powder extract tablets at 2.5–3.0 g/day for 1 to 3 months has also produced reports of headaches, attention disturbances, and agitation [70].

W. somnifera (nightshade), previously mentioned for its hepatotoxic properties, contains the active compound TEG, which at accidental high concentrations in humans has resulted in coma and metabolic acidosis [78]. Similar neurological toxicity has also resulted upon oral administration to both mouse and rat models (5630 mg/kg/day in rats and 563 mg/kg/day in mice) [79]. Furthermore, human consumption of 250 mg and 500 mg 8:1 aqueous extract W. somnifera tablets at 750 mg/day for 3 days has resulted in the adverse events of increased appetite, libido, and hallucinogenic effects with vertigo [80].
Plants and plant constituents associated with renal toxicity

Aristolochic acids I and II are found in Aristolochia fangchi, a member of the Aristolochiaceae family. Various animal studies presented in Table 3 studied varying concentrations of each aristolochic acid and its effect on the body. Low doses produced proteinuria and glucosuria, while an increasing dosage produced necrosis and interstitial fibrosis [81–83]. In a 1992 human study, over 50% of patients experienced Belgian epidemic-nephropathy upper urethral cancer due to long-term consumption of a weight loss pill. ESRD was also observed in 70% of aristolochic acid-poisoned patients, as well as hypertension, proteinuria, and glycosuria [82]. In 1996 case studies, aristolochic acid nephropathy was directly correlated to Chinese herb nephropathy. Women (age range from 27–42) consumed Chinese herbal weight loss pills for 13–23 months. Renal transplantation was necessary 9–27 months after the women stopped taking these pills. Patients in these case studies experienced renal and urinary tract degradation symptoms [83].

In another literature review of herbal medicine toxicities, aristolochic acid nephropathies such as Fanconi syndrome, renal failure, and tubular necrosis were observed in patients from Taiwan, Japan, and China [84]. Molecular analysis revealed that aristolochic acid is responsible for covalently binding to DNA in the nucleus, forming AL-DNA adducts that cause mutation or transcription error in protein synthesis that may cause these renal injuries, particularly in cases of renal cell carcinoma [85]. Safrole is a compound present in sassafras and fennel essential oil that has been previously discussed as hepatotoxic but also has effects on the kidney. Many systemic effects were observed after two different groups of rats were administered either sassafras oil or safrole for 2 years. Oil comprised 0.117% of the diet in one group, while subjects in the second group were given pure safrole, which constituted 0.039% of their diet. Changes in kidney structure were noted postmortem [39].

Emodin, a toxic anthraquinone present in whole leaf A. barbadensis extract, has also demonstrated evidence for renal toxicity in rat models. In one study, the whole leaf extract administered orally to rats resulted in hypokalemia and renal failure [62].

Plants and plant constituents associated with reproductive toxicity and developmental effects

NDGA is a compound that has effects on the digestive and reproductive organ systems. NDGA is found in the leaves of chaparral (L. tridentata, Zygophyllaceae). A hydroethanolic extract of chaparral (4% NDGA) was administered to hamsters. Numerous effects were observed, including growth retardation, irritability, aggressiveness, and hypoplasia of testicles and accessory sex glands [25].

Emodin, mentioned previously for its toxic effects in A. barbadensis, has also demonstrated reproductive toxicity in an animal study. In one rat model, oral administration of 100 mg/kg of whole leaf aloe extract produced reproductive inflammation and toxicity, notably, significant sperm damage [62].

L. meyenii, or maca, has been previously mentioned for its digestive and neurological toxicity. MTCA, an active ingredient in the maca root, has also been associated with causing reproductive distress in the form of altered menstrual cycles [65]. According to a literature review on clinical trials conducted involving maca, oral consumption of maca at 2.0–3.5 g/day for 1 to 3 months has resulted in adverse side effects of abdominal pain, gingival bleeding, and abnormal functioning of estrogen-dependent systems, such as endometriosis and breast cancer [26].

Plants and plant constituents associated with toxicity of the endocrine system

Safrole has been reported as hepatotoxic and toxic to kidneys in a study where rats were administered sassafras essential oil (0.117% of diet) or pure safrole (0.039% of diet) for 2 years. Subjects were noted as also having changes to various endocrine organs, including adrenals, thyroid, pituitary, and testes or ovaries [39].

Plants and plant constituents associated with dermal toxicity

Menthol is a well-known compound present in the Mentha genus of the Lamiaceae family. Mentha piperita (peppermint) is the origin of peppermint leaf essential oil. In a case study, a patient ingested over 40 drops of peppermint leaf oil, afterwards experiencing a chemical burn of the oral cavity and pharynx. The patient also showed tachycardia, tachypnea, and edema of the lips, tongue, and uvula [79].

Discussion

In conclusion, based on the case studies and experiments previously mentioned, there is an overwhelmingly vast degree to which HDSs may induce toxicity events to multiple body systems in both animals and humans. A total of 47 known compounds in 55 different plant species from 46 plant families demonstrated harmful side effects due to hepatotoxicity, cardiovascular toxicity, central nervous system toxicity, and digestive system toxicity. These studies provide relevant evidence to both the FDA and to the public consumer for the growing need of awareness of the degree of toxicity in HDSs. Furthermore, the accumulation of these studies speaks to an immediate need to hold manufacturers of these substances accountable for ensuring that the products they manufacture and release to the market do not pose a threat to public health. Moreover, this evidence speaks to the necessity for further in vitro bioassay, animal experimentation, and clinical investigation that may shed further light on the possible toxicity of commonly used HDSs.

While 49 known toxic plant compounds have been observed in this literature review, the investigation into the toxicity of plant supplements still has ground to cover. While case studies often demonstrate the toxic effects of active plant compounds, there is very little information provided in the literature about the exact minimum toxic or lethal doses in animals and humans. In fact, many studies and sources report only toxicity and adverse events resulting from herbal supplements after consumption of doses many times higher than the therapeutic doses recommended by supplement manufacturers. Furthermore, a significant amount of the literature considered for this review only established cytotoxicity using in vitro models. Additional studies are needed in order to establish relevancy to humans. Moreover, it may be necessary...
to initiate in vitro bioassays of other dietary supplement ingredients that may not show immediate adverse side effects, but are nonetheless very commonly used. These investigations may reveal as yet unknown toxicities or even advances in efficacy that these supplements may pose to public health that are unknown to manufacturers and/or the FDA. It is also prudent to consider that adverse events related to the consumption of botanical dietary supplements and other herbal medicinal drugs may be due to factors that cannot be easily identified by reading product labels for harmful plants or active ingredients. Adverse events may be related to several other factors, such as contamination with adulterants in the manufacturing process, ingredients benign by themselves that may react negatively with each other or other drugs, dosage variability, or the consumers themselves who may constitute special populations that may be at risk (i.e., children, pregnant women) [9]. These factors necessitate further investigation and research to further understand the cause of adverse medical events connected to these products and mitigate prevention of such events in the future.

Acknowledgements

The authors are indebted to Auburn University Initiative in Cancer for financial support. The authors are also grateful to Dr. Joseph Betz from the Office of Dietary Supplements, National Institutes of Health, USA, and Dr. Robin Marles from Health Canada for reviewing and providing helpful critiques to the manuscript. E. Lopez thanks Auburn University Undergraduate Fellowship Program for continued support in her Pharmaceutical Sciences research endeavors. Thanks to King Abdulaziz University for a Master’s degree scholarship to A. J. Almalki.

Conflict of Interest

The authors declare no conflict of interest.

References

[74] Rader JO, Pawar RS. Primary constituents of blue cohosh: quantification in dietary supplements and potential for toxicity. Anal Bioanal Chem 2013; 4409–4417

