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Introduction
For the drug development, farnesyl pyrophosphate synthase (FPPS) 
enzyme has been established as a molecular target [1]. FPPS (EC 
2.5.1.10), a member of E-family of the prenyltransferases, is an im-
portant enzyme in the mevalonate pathway, the elite method of 
isoprenoid synthesis in animals, concerned with cholesterol bio-
synthesis and post-translational modification of signaling proteins 
[2–4]. The human farnesyl pyrophosphate synthase (hFPPS) cata-
lyzes the biosynthesis of the C-15 isoprenoid farnesyl pyrophos-
phate (FPP) from dimethylallyl pyrophosphate (DMAPP) through 
geranyl pyrophosphate (GPP) via one by one abridgment of two 

isopentenyl pyrophosphate (IPP) units [5]. FPP and GGPP play an im-
perative function in a surfeit of cellular biological functions such as 
over expression of FPPS in fibroblasts also increases farnesylation of 
Ras signaling protein and activates the extracellular Ras/ERK signa-
ling cascade [6]. Bisphosphonates, the stable analogues of inorganic 
pyrophosphate, are a class of drugs that have been used to treat se-
veral bone disease such as osteoporosis, post menopausal osteopo-
rosis in elderly women, osteitis, Paget’s disease of bone, multiple 
myeloma, osteogenesis imperfecta and similar diseases [7]. Litera-
ture survey reveals that N-containing bisphosphonates (NBps) tar-
get FPPS enzyme of the mevalonate pathway [8]. Many NBps drugs 
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AbStr Act

Human farnesyl pyrophosphate synthase (hFPPS) is a well-
settled therapeutic target and it is an enzyme of the mevalona-
te pathway which catalyzes the biosynthesis of the C-15 isopre-
noid farnesyl pyrophosphate. QSAR studies by using Monte 
Carlo method for human farnesyl pyrophosphate synthase inhi-
bitors has been carried out using balance of correlation tech-
nique with Index of ideality correlation. For construction of QSAR 
models, six random splits were prepared from the data of 73 
phosphonates and hybrid optimal descriptors procured from 
graph (HFG) and SMILES based notations were employed. The 
developed QSAR models have robustness, good fitting ability, 
generalizability and internal predictive ability. The external pre-
dictive ability has been certified by testing various precedents. 
The values of R2, IIC, Q2 and ∆R2

m for the best model are 0.9304, 
0.9614, 0.9061 and 0.0861 respectively. The developed QSAR 
models met with the specified standards given in OECD guideli-
ne and applicability domain. The structural feature promoters 
for the end point increase and promoters for end point decrease 
have been extracted. The predicted pIC50 for the new proposed 
compounds have also been reported.
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like alendronate, risedronate and pamidronate have been revealed 
to inhibit FPPS enzyme [9–11].

Recently, J. Park et al. [12] discovered the biological importance 
of the allosteric pocket, near the IPP substrate binding site of the 
hFPPS active site, and exhibited that FPP product can bind to this 
allosteric pocket. This binding sealed the enzyme in an inactive con-
formation and therefore, suppling a feedback mechanism for re-
gulating the intra-cellular levels of isoprenoid biosynthesis in vivo. 
To understand this mechanism, the thienopyrimidine-based mo-
nophosphonate (ThP-MP) or N-containing monophosphonates 
(NMps) have been designed and reported by J. Park et al. [1, 3] to 
get the essential minimal pharmacophore that is required for allo-
steric inhibition of hFPPS.

Therefore, many scientists are engaged to find out the liaison 
between the structure and the inhibition activities of phosphona-
te inhibitors [13–16]. The most successful method for constructing 
this liaison is Quantitative Structure Activity Relationship (QSAR) 
method, which is used to predict the drug activities and informa-
tion for designing new potential drugs [17–21]. In the present era 
of drug design, the significance of quantitative structure activity 
relationship method is well recognized in view of the fact that QSAR 
know how to build the early forecast of activity-related characte-
ristics of drug molecules and can eradicate the molecules with obn-
oxious properties [22, 23]. Literature survey shows that 3D-QSAR 
studies have been reported between NBPs and FPPS [24–31]. How-
ever, the majority of QSAR study was performed in non-mamma-
lian species although Fernández et al. [32] and Liu et al. [33] repor-
ted the 3D-QSAR of N-BPs against hFPPS. It should be more relia-
b l e  t o  t a k e  i n t o  a c c o u n t  t h i e n o p y r i m i d i n e - b a s e d 
monophosphonate (ThP-MP) and N-BPs to study the QSAR of phos-
phonate.

Recent published papers reveal that the simplified molecular 
input line entry system (SMILES) is a substitute to classical QSAR 
methods and it can be used for the prediction of molecular struc-
tures with appropriate end point or activity [34–49]. In all the QSAR 
models, depending on Monte Carlo optimization method, the per-
tinent activity is treated as random event [50–53]. In the light of 
these facts and in continuation of our work [48, 54–63] on biolo-
gical important heterocyclic compounds, we herein report Monte 
Carlo method based QSAR studies of 73 compounds i. e. thienopy-
rimidine-based monophosphonate (ThP-MP) and N-containing bis-
phosphonates N-BPs active against hFPPS using SMILES and graph 
optimal descriptors.

Method

The data set
A series of 73 phosphonate (NBPs and NMPs) derivatives with acti-
vity as hfpps inhibitors was retrieved from literature [3, 32, 33]. The 
structures of NBPs and NMPs were sketched using Marvin sketch 
[Marvin Sketch 6.0.4 Chem Axon Ltd. http://www.chemaxon.com] 
and converted into SMILES by OpenBabel [64]. The SMILES nota-
tions of NBPs and ThP-MP molecules are presented in table 1S (sup-
plementary information). The QSAR models were built up for six 
random splits (20-30 % of compounds were used in calibration set). 
All six splits were designed according to the following principles: i) 

the range of the endpoint (pIC50) is evenly distributed for each sub-
set ii) the total level of identity between all the splits is not more 
than 40 % which shows that splits are different (table 2S, supple-
mentary information).

The identity percentage of the six splits has been confirmed by 
the reported method [65]. Four sets namely training, invisible-trai-
ning, calibration, and validation sets were made from all the six 
splits. Each set has its sole responsibility. The roll of the different 
sets for developing a QSAR model are: (a) The training set (Train) is 
designer of the model; (ii) invisible-training (invTrain) set is survey-
or of the model, this set sense and prevent the process of overtrai-
ning; (iii) the calibration set (Calib) is a specialist and have the au-
thority to declare that the model is ready; (iv) the validation set 
(Vali) is the reviewer of actual predictive potential of the model.

Index of ideality of correlation (IIC) used to build up 
predictive model
The balance of correlations is a technique described in the literature 
[66–69]. The crux of this technique is building up of a model via the 
Monte Carlo optimization of the following target function (TF):

TE R R |R

R

training invisible-training training

invisible-tra

  

 iining | Const
 

(1)

The Rtraining and Rinvisible − training are correlation coefficients between 
observed and calculated values of an endpoint for the training and 
invisible training sets, respectively. The Const is an empirical con-
stant which is usually fixed [69].

In the present manuscript, modified target function (TFm) for 
the balance of correlation has been used:

TF TF IICm    (2)

The index of ideality of correlation (IIC) can be an alternative of tra-
ditional correlation coefficient [66, 67]. Literature survey shows 
that a QSPR/QSAR model without IIC for the prediction of endpoint 
has some possible defects of error [68, 69].

The index of ideality of correlation (IIC) is calculated with the 
following formula:

IIC r
MAE , MAE

calibration
calibration calibration 

 



min

max

( )
( MMAE , MAEcalibration calibration

 )
 

(3)

The rcalibration is the correlation coefficient value between experi-
mental and calculated values of an endpoint for the calibration set.

MAE is mean absolute error which can be determined with the 
following equation:






   


 



MAE
1

N
0,

N is the number of 0

calibration k
k 1

k

N

k  

(4)
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(5)

The quality of prediction (Δk) for one substance from a set can be 
estimated as the following:

 k kobserved calculatedk   

The optimal descriptor
Descriptors procured from either SMILES or molecular graph can 
be applied to symbolize the molecular structure. Literature survey 
reveals that “hybrid” demonstration of the molecular structure, 
i. e., by SMILES along with molecular graph, can grant a better 
model demonstrated by higher statistical quality than the model 
which is predicted by only SMILES or molecular graph[48],[70]. The 
hybrid optimal descriptor DCW, adopted for generating QSAR mo-
dels for the pIC50, was determined as per the following equation:

Hybrid
epoch epoch

epoch

DCW (T,N ) DCW (T,N )

DCW (T,N )


SMILES

Graph


  

(6)

Where T is threshold and Nepoch is number of epochs used in monte 
carlo method optimization. Threshold helps in exclusion of use of 
rare molecular features.

SMILES based descriptors were calculated using following equa-
tion:

SMILES 
epochDCW (T,N )   



SMILES
k k

k

CW (S ) CW (SS )

CW (SSS ) CW (B



  OOND)

CW (NOSP) CW (HALO)

CW (HARD) CW (PAIR)

 

       

 (7)

Where, Sk, SSk and SSSk represents local smile attributes while 
BOND, NOSP, HALO, HARD and PAIR represent global SMILES attri-
butes and exhibit presence of double, triple or stereochemical 
bond, presence of nitrogen, oxygen, sulphur and phosphorus, pre-
sence of halogen as well as pairing between these attributes[71]. 
Optimal descriptors based on graph were calculated using fol-
lowing equation:

GRAPH 
epochDCW (T,N )   

 

CW (EC0 ) CW (EC1 )

CW (EC2 ) CW (EC3

k k

k k



  ))

CW (VS2 ) CW (NNC )

CW (C3) CW (C4)

CW (C5) CW (C6)

k k 

 

 



   

(8)

Where, EC0k, EC1k, EC2k are Morgan’s extended connectivity indi-
ces for kth vertex respectively. VS2k is the sum of vertex degrees 
which take place at topological distance 2 relative to kth vertex. 
NNC is the nearest neighbor code. The C3, C4, C5 and C6 are de-
scriptors for presence of three-member (C3), four-member (C4), 
five-member (C5) and six-member rings (C6) respectively. In this 
study, hydrogen filled graphs (HFG) have been used.

CORALSEA software was used to prepare the QSAR models. The 
best model was scrutinized using the procedure given in litera-
ture70. The most prognostic combination of threshold (T) and num-
ber of epochs (Nepoch) for the six splits was executed from values 
1-10 for T and 1-50 for Nepoch. The model was built using balance 
of correlation technique with index of ideality of correlation (IIC) 
of Monte Carlo method. The weight of dr was 0.1. Start step of the 
optimization was 0. 5 * CW(SA). Precision of the optimization was 
0.1 * CW(SA) and weight of IIC was 0.1. Here, CW(SA) is weight of 
structural attribute (SA) at the start.

Possessing numerical information on above CW, DCW (T, Nepoch) 
can be computed for molecules of training and test set. These data 
can be used for calculation of pIC50 according to following ▶Eq. (9):

pIC C0 C1 DCW (T,N )
50

*Hybrid
epoch= +

 
(9)

Validation of QSAR model
The most important objective of any QSAR modeling is to estab-
lish a sturdy model competent to predict the idiosyncrasy of new 
molecules in an objective, reliable and precise manner [49, 72]. 
Three methods are cited in the literature for evaluation of sturdi-
ness and reliability of developed model. These are: (a) internal va-
lidation or cross-validation using the training set compounds (b) 
external validation using the test set compounds (c) data randomi-
zation or Y-scrambling.

Leave-one-out (LOO) cross validation technique was used to de-
velop models as an internal validation. Cross-validated Q2 interpret 
the predictive ability of the model [73, 74]. Higher the value of Q2 
means better model prediction. The cross-validated Q2 is stated as:

Q
2
 




1

(Y Y )

(Y Y )

obs pred
2

obs train
2






  

(10)

Where, Yobs is observed property of the training set compounds, 
Ypred is LOO-predicted property of the training set compounds and  
is mean observed property of the training set compounds. The pre-
dictive ability of model is considered as acceptable when Q2 is gre-
ater than 0.5.

Similar methodology can be applied for external validation. The 
predictive ability of a model is determined by calculating Q2

ext 
which is defined as:

 Q
ext
2

 



1

(Y Y )

(Y Y )

obs (test) pred (test)
2

obs(test) train
2






  

(11)
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Where, Yobs(test) is the observed property of the test set com-
pounds, Ypred(test) is the predicted property of the test set com-
pounds and Y̅train is mean observed property of the training set 
compounds. The value Q2

ext for an acceptable model should be gre-
ater than 0.5 test [75].

Y-randomization test was performed to inspect the robustness 
of the model. A parameter CR2

p penalizes the model R2 for a small 
difference between squared mean correlation coefficient (R2r) of 
randomized models and squared correlation coefficient (R2) of the 
non-randomized model [75]. The parameter CR2

p is defined as:

c
p
2 2

r
2

R R (R R 
 

(12)

For an acceptable QSAR model, the value of CR2
p should be greater 

than 0.5.

Compliance with Applicability domain (AD) and 
OECD principles
Applicability domain (AD) is another important aspect of a built 
QSAR model. It gives the information related to the biological, 
structure and physiochemical properties to make the prophecy for 
new compounds. AD is especially significant because it is applied 
for the evaluation of the authenticity of the developed QSAR model. 
Compounds from the training set can be used to interpret the AD 
of the developed QSPR model. The predictions of a QSAR/QSPR 
model are more authentic when predicted molecules are within 
applicability. For defining AD, procedure reported in literature was 
applied [65].

To assist the reflection of a QSAR model for regulatory purposes 
[76], it should satisfy the five principal as: 1) a defined endpoint: 
hFPPS inhibitory activity as definite endpoint, 2) an unambiguous 
algorithm: Monte Carlo method as unambiguous algorithm, 3) a 
defined domain of applicability: percentage of molecular features 
with defined role as domain of applicability, 4) appropriate measu-
res of goodness-of–fit, robustness and predictivity: High values of 
R2, Q2; CR2

p, R2
m(av) and ∆R2

m metrics, as suitable measures of 
goodness-of-fit, robustness and predictivity 5) a mechanistic in-
terpretation, if possible: List of molecular features responsible for 
increase and decrease of activity are applied for mechanistic inter-
pretation.

Result and Discussion
Six random splits were generated from the data set presented in 
table 1S (supplementary information). All sets were carefully pre-
pared so the ranges are approximately equivalent for each sub-set. 
The hybrid optimal descriptor DCW was adopted for generating 
QSAR models. The outcomes of the applied methodology for defi-
ning AD reveal that maximum numbers of molecules are within the 
defined AD. So, all the studied compounds had typical behavior 
and all were incorporated in developing QSAR models.

The best QSAR models for six different splits with other statisti-
cal parameters of all six equations are given in ▶table 1.

The statistical parameters given in ▶table 1 clearly indicate that 
the values of statistical criteria of all six equations are significant 
for each subset i. e. training, invisible- training, calibration and va-

lidation sets. The statistical trait of calibration set (R2 = 0.9304 and 
Q2 = 0.9061) for the equation of split 4 was distinguished best, 
therefore the QSAR model expressed by this was judged to be the 
preeminent model. The good fitting ability and good internal pre-
dictive power of the described model has been implied by the R2 
value (0.7380) for the training sets and Q2 value of calibration set. 
The value of R2 is 0.7602 for validation sets which shows the excel-
lent external predictive ability of the developed QSAR model. The 
authenticity and robustness of the QSAR models are justified by 
less difference between R2 and Q2 values.

Y-randomization process was applied to check the chance cor-
relation, in which Y values were scrambled in 1000 trials in ten se-
parate runs (table 3S, supplementary information). The resulting 
value of CR2

p was found more than 0.5 which authenticate that the 
developed models are free from chance correlation [75].

The built QSAR model was checked for the external predictive 
power by applying the benchmarks proposed by Golbraikh and 
Tropsha [74], Roy and Roy [77] and Ojha et al. [78]. The values of 
different proposed benchmarks are displayed in table 4S (supple-
mentary information) and it can be seen that these values are 
within specified ranges. Therefore, it can be said that these QSAR 
equations have good external predictive ability. Calculated activi-
ty and applicability domain of all compounds along with different 
sets are exhibited in supplementary table 5S (supplementary  
information). The procedure described in literature was used for 
the calculation of applicability domain and it is based on split  
defect [66].

The plots between observed versus calculated activity and re-
siduals versus observed activity are shown in ▶Fig. 1.

Mechanistic interpretation of developed QSAR 
models
The correlation weights (CW) of structural features (SAk) give the 
information about the structural attributes which are responsible 
for the increase and decrease of the endpoint. If CW(SAk) is positi-
ve in all three probes then this feature will enhance the value of 
endpoint and if CW(SAk) is negative in all three probes then it will 
reduce the value of endpoint. Based on these considerations, some 
graph based structural attributes with stable positive values (pIC50 
enhancer) for best QSAR model 3 are EC0-O…1…, EC0-P…4…, EC1-
O…4…, NNC-O…101., EC1-C…5…, NNC-P…413, EC2-C…10.., VS2-
C…6… etc. Similarly, some graph based structural attributes with 
stable negative values (pIC50 decreasing) for this model are EC0-
C…2…, EC1-C…4…, EC0-C…3…, EC0-N…2…, EC1-C…6…, NNC-C…
220., VS2-C…9… etc.

In the same manner, some pIC50 enhancer SMILES based attribu-
tes are (…O…(… (branched oxygen with branching),  +  +  +  + N---
B2 =  = (nitrogen with double bond),  +  +  +  + N---O =  =  = (nitrogen with 
oxygen),  +  +  +  + N---P =  =  = (nitrogen with phosphorous),  +  +  +  + O--
-B2 =  = (oxygen with double bond),  +  +  +  + O---P =  =  = (oxygen with 
phosphorous),  +  +  +  + P---B2 =  = ( phosphorous with double bond), = …
(…….(double bond with branching), = ………..(double bond), C………..
(methyl group), O…(…(…(oxygen with double branching), O…(……..
(oxygen with branching), O……….. (oxygen), O… = …(…(oxygen with 
double bond and branching), P…(…….(phosphorous with branching), 
P………..(phosphorous), C4……0…(absence of four membered ring ), 
C3……0…( absence of three membered ring), BOND10000000(one 
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double bond), 1…(……., HALO00000000 (absence of halogen), = …O…
(…(double bond with oxygen and branching), P…(…O…(phosphorous 
with branched oxygen) etc and some SMILES based promoters of 
pIC50 decrease are (…(…….(branching with further branching), 
(………..(branching), C…(…….(methyl with branching), O… = …….(oxy-
gen with double bond), 1………..(presence of one ring), (…P…(…(bran-
ch having phosphorous with branching) etc. The structure generated 
using the promoters of increase in end point with their predicted pIC50 
are given in table 6S (supplementary information). By using the pro-
moters of endpoint, we have developed some more hFPPS inhibitors. 
We have predicted the pIC50 by all QSAR models using their respecti-
ve equation and then average pIC50 was calculated. On the basis of 
average calculated pIC50, compound 14 was found most potent by 
using model of split 3 but the difference between the maximum and 
minimum calculated pIC50 from all models is 3.8938. Compound 16 
shows nearly constant value of calculated pIC50 and the difference 
between the maximum and minimum calculated pIC50 is 0.9059. The 
graphical representation of all the calculated pIC50 with average cal-
culated pIC50 is shown in ▶Fig. 2. The result of table 6S (supplemen-
tary information) clearly shows that the bisphosphonates developed 
as hFPPS inhibitors are more potent inhibitors than monophosphona-
tes. It has been reported in literature [1, 3, 7–12] that the interactions 

of the bisphosphonates in the active site of the HFFPS are highly con-
ditioned by the protonation state of the functional groups but the me-
thod used in this work does not consider this aspect. It is a limitation 
of this work. Despite that the proposed QSAR models predicted the 
activity of reported bisphosphonates and monophosphonates accu-
rately.

Two 3D QSAR model developed by comparative molecular field 
analysis (CoMFA) method for the some part of our dataset has been 
described by Fernández et al. [32] and Liu et al.[33]. The values for 
statistical features used by Fernández et al. [32] to examine the 
model were n = 20, R2 = 0.943, Q2 = 0.586, F = 63 and SEE = 0.11 and 
by Liu et al. [33] to examine the model were n(training) = 42, 
R2

(training) = 0.975, n(test) = 11 and R2
(test) = 0.0.753. In the reported 

QSAR models, monophosphonates were not used, but have used 
to develop a relationship between monophosphonate and bisphos-
phonates. So, we can say that the developed QSAR models in the 
present manuscript have better statistical quality as compared to 
the reported model in terms of internal as well as external predic-
tion criteria. Also, the resent QSAR models are one parameter 2D 
QSAR models which are simple in interpretation and simple to 
apply.

▶table 1 Statistical parameters of all six QSAR Models

Split SEt n r2 ccc IIc Q2 s MAE F r2-Q2 Equation for different 
Models

Split 1

Training 21 0.9019 0.9484 0.8634 0.8848 0.303 0.238 175 0.0171
pIc50 = 3.6970585 
( ± 0.0365511) + 0.0163073 
( ± 0.0002255)  *  DCW(3,27)

InvTrain 16 0.9053 0.9002 0.2412 0.8835 0.451 0.339 134 0.0218

Calib 19 0.8667 0.9020 0.9309 0.8254 0.398 0.318 110 0.0413

Validation 17 0.7466 NC 0.8479 0.6801 0.486 0.398 44 0.0665

Split 2

Training 20 0.9722 0.9859 0.6574 0.9662 0.173 0.126 628 0.006
pIc50 = -0.1563000 
( ± 0.0563218) + 0.0282081 
( ± 0.0002523)  *  DCW(2,48)

InvTrain 20 0.9722 0.9805 0.9581 0.9676 0.189 0.143 629 0.0046

Calib 17 0.7386 0.8546 0.8404 0.6860 0.498 0.389 42 0.0526

Validation 16 0.6587 NC 0.6432 0.5872 0.544 0.433 27 0.0715

Split 3

Training 20 0.9827 0.9913 0.8112 0.9787 0.134 0.096 1025 0.004
pIc50 = -1.5927099 
( ± 0.0653207) + 0.0314089 
( ± 0.0002405)  *  DCW(1,37)

InvTrain 21 0.9828 0.9872 0.5259 0.9792 0.137 0.109 1083 0.0036

Calib 20 0.7924 0.8797 0.8902 0.7531 0.458 0.366 69 0.0393

Validation 12 0.8513 NC 0.6793 0.7840 0.344 0.243 57 0.0673

Split 4

Training 20 0.7380 0.8492 0.7028 0.6888 0.400 0.307 51 0.0492
pIc50 = -1.3745288 
( ± 0.2456229) + 0.0363736 
( ± 0.0010521)  *  DCW(7,13)

InvTrain 20 0.7361 0.8433 0.5890 0.6926 0.575 0.469 50 0.0435

Calib 15 0.9304 0.9538 0.9614 0.9061 0.267 0.209 174 0.0243

Validation 18 0.7602 NC 0.6703 0.6864 0.486 0.409 51 0.0738

Split 5

Training 19 0.9483 0.9735 0.8766 0.9365 0.195 0.124 312 0.0118
pIc50 = 0.4692126 
( ± 0.0724623) + 0.0249464 
( ± 0.0003331)  *  DCW(2,17)

InvTrain 18 0.9467 0.9341 0.3001 0.9335 0.342 0.279 284 0.0132

Calib 19 0.6500 0.7905 0.7903 0.5775 0.530 0.431 32 0.0725

Validation 17 0.8111 NC 0.6967 0.7591 0.493 0.356 64 0.052

Split 6

Training 17 0.9103 0.9530 0.6677 0.8843 0.224 0.166 152 0.026
pIc50 = 1.8911561 
( ± 0.1196966) + 0.0174180 
( ± 0.0003871)  *  DCW(1,15)

InvTrain 20 0.9070 0.8486 0.2262 0.8871 0.517 0.438 176 0.0199

Calib 17 0.8749 0.9289 0.9348 0.8376 0.428 0.322 105 0.0373

Validation 18 0.7417 NC 0.4430 0.6865 0.450 0.380 46 0.0552

Where, n is number of cases, R2 is the squared correlation coefficient, CCC is concordance correlation coefficient, IIC is Index of ideality of correlation, 
Q2 is the leave-one-out (LOO) cross-validation coefficient, s is standard error of estimation, MAE is mean average error, F is the Fischer ratio and NC 
means not calculated.

163

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Kumar P et al. QSAR Models for HFPPS Inhibitors … Drug Res 2019; 69: 159–167

Original Article Thieme

Conclusion
Monte carlo optimization method using CORAL software has been 
used successfully for designing a statistically robust QSAR models 
for human farnesyl pyrophosphate synthase inhibitors. The best 

QSAR model described by DCW(7,13) optimal descriptor was ob-
tained from split 4. In the mechanistic interpretation, the presence 
of nitrogen with double bond, a phosphate group and oxygen with 
branched double bond were found promoter of endpoint. The dis-

▶Fig. 1 The plots between observed pIC50 versus calculated pIC50 and residuals versus observed pIC50.

▶Fig. 2 Graphical representation of calculated pIC50 from all models for all proposed compound.
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cussed QSAR models satisfy the OECD conditions for a good QSAR 
model. The outcomes of the applied methodology for defining AD 
reveal that maximum numbers of molecules are within the defined 
AD. Thus, this approach can be used for generation of new poten-
tial human farnesyl pyrophosphate synthase inhibitors.
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