Der Nuklearmediziner 2019; 42(01): 36-45
DOI: 10.1055/a-0807-3512
Theranostik
© Georg Thieme Verlag KG Stuttgart · New York

CXCR4-gerichtete Endoradiotherapie von hämatologischen Erkrankungen

CXCR4-directed endoradiotherapy in hematologic malignancies
Constantin Lapa
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
Heribert Hänscheid
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
K. Martin Kortüm
2   Medizinische Klinik und Poliklinik II des Universitätsklinikums Würzburg, Zentrum für Innere Medizin, Würzburg
,
Hans-Jürgen Wester
3   Lehrstuhl für Pharmazeutische Radiochemie, Fakultät für Chemie, Technische Universität München, München
,
Andreas K. Buck
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
25 April 2019 (online)

Zusammenfassung

Der C-X-C Chemokinrezeptor 4 (CXCR4) spielt sowohl in der Physiologie als auch Pathologie des Menschen eine wichtige Rolle, so z. B. in der Embryo- und Organogenese, im Rahmen des Homings von Stamm- und Progenitorzellen in das Knochenmark oder bei der Orchestration der Entzündungsantwort auf inflammatorische oder infektiöse Prozesse. Da eine Überexpression des Rezeptors für über 20 verschiedene Tumorentitäten nachgewiesen werden konnte und dieser sowohl die Tumorigenese als auch Metastasierung fördert, stellt er eine hochinteressante Zielstruktur für die Onkologie dar.

Für die nicht invasive Bildgebung von CXCR4 wurden in den letzten Jahren mehrere spezifische Radiotracer für diesen Chemokinrezeptor entwickelt, wobei der klinisch bisher am häufigsten eingesetzte PET-Tracer 68Ga-Pentixafor an der TU München in der Arbeitsgruppe von Hans-Jürgen Wester entwickelt wurde. Als therapeutischer Partner steht dem 68Ga-Pentixafor das Pentixather zur Seite, das für therapeutische Zwecke mit α- und β-Emittern markiert werden kann.

Das CXCR4-gerichtete theranostische Konzept konnte erfolgreich in die Klinik transferiert werden. Bis heute wurden über 40 Endoradiotherapien mit 90Y- oder 177Lu-markiertem Pentixather durchgeführt, wobei die größte Erfahrung für den Einsatz bei hämatologischen Neoplasien wie dem Multiplen Myelom, dem diffusen großzelligen B-Zell-Lymphom und der akuten myeloischen Leukämie besteht. Die CXCR4-gerichtete Endoradiotherapie ist hierbei Teil der Konditionierungstherapie vor geplanter Stammzelltransplantation und hat sich als gut verträgliche, nebenwirkungsarme Option auch bei extensiv vorbehandelten Patienten erwiesen. Zukünftige Studien (z. B. die COLPRIT-Studie) werden weiteren Aufschluss über die Wirksamkeit und den Stellenwert der Pentixather-Therapie bei hämatologischen Erkrankungen liefern.

Abstract

C-X-C motif chemokine receptor 4 (CXCR4) plays a crucial role in many physiologic as well as pathologic conditions including embryo- and organogenesis, homing of hematologic stem and progenitor cells to the bone marrow niche and orchestration of leukocyte trafficking as part of the immune response to inflammatory or infectious processes. Since CXCR4 is also overexpressed by more than 20 different tumor entities and fosters both tumor growth and invasiveness as well as metastasis, it represents a very attractive target in oncology.

During the last decade, a multitude of specific, CXCR4-directed radiotracers have been introduced. Most clinical experience exists for 68Ga-Pentixafor, which has been developed by the group of Hans-Jürgen Wester at TU Munich. As a therapeutic companion, Pentixather can be labelled with both α- and β-emitting radionuclides.

CXCR4-directed theranostics has been successfully transferred to the clinic. To date, more than 40 cycles of endoradiotherapy with 90Y- or 177Lu-labelled Pentixather have been administered with most experience existing for hematologic disease like multiple myeloma, diffuse large B cell lymphoma or acute myeloid leukemia.

First results demonstrated that endoradiotherapy can be safely performed as part of the conditioning regimen prior to autologous or allogeneic stem cell transplantation and can achieve high tumor cell kill even in heavily pre-treated patients with very advanced stages of disease. Further prospective studies to evaluate the efficacy of CXCR4-directed endoradiotherapy (e. g. the phase I/II COLPRIT trial) are about to be initiated and will provide further evidence on synergistic multimodality treatment in hematologic neoplasms.

 
  • Literatur

  • 1 Strosberg J, El-Haddad G, Wolin E. et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. The New England journal of medicine 2017; 376: 125-135
  • 2 Imhof A, Brunner P, Marincek N. et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 2011; 29: 2416-2423
  • 3 Rahbar K, Ahmadzadehfar H, Kratochwil C. et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J Nucl Med 2017; 58: 85-90
  • 4 Hofman MS, Violet J, Hicks RJ. et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018; 19: 825-833
  • 5 Domanska UM, Kruizinga RC, Nagengast WB. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 2013; 49: 219-230
  • 6 Ma Q, Jones D, Borghesani PR. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448-9453
  • 7 Nagasawa T, Hirota S, Tachibana K. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635-638
  • 8 Tachibana K, Hirota S, Iizasa H. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591-594
  • 9 Zou YR, Kottmann AH, Kuroda M. et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595-599
  • 10 Karpova D, Bonig H. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis – Lessons From Pharmacological and Genetic Models. Stem Cells 2015; 33: 2391-2399
  • 11 Loetscher P, Moser B, Baggiolini M. Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol 2000; 74: 127-180
  • 12 Feng Y, Broder CC, Kennedy PE. et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872-877
  • 13 Nagafuchi Y, Shoda H, Sumitomo S. et al. Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype, CXCR4 expression on memory CD4(+) T cells, and disease activity. Sci Rep 2016; 6: 29338
  • 14 Orimo A, Gupta PB, Sgroi DC. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335-348
  • 15 Muller A, Homey B, Soto H. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50-56
  • 16 Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761-1767
  • 17 Guo F, Wang Y, Liu J. et al. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016; 35: 816-826
  • 18 Kryczek I, Wei S, Keller E. et al. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 2007; 292: C987-995
  • 19 Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263-274
  • 20 Williams SA, Harata-Lee Y, Comerford I. et al. Multiple functions of CXCL12 in a syngeneic model of breast cancer. Mol Cancer 2010; 9: 250
  • 21 Arya M, Patel HR, McGurk C. et al. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 2004; 4: 291-303
  • 22 Su L, Zhang J, Xu H. et al. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clinical cancer research: an official journal of the American Association for Cancer Research 2005; 11: 8273-8280
  • 23 Speetjens FM, Liefers GJ, Korbee CJ. et al. Nuclear localization of CXCR4 determines prognosis for colorectal cancer patients. Cancer Microenviron 2009; 2: 1-7
  • 24 Terasaki M, Sugita Y, Arakawa F. et al. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathol 2011; 28: 89-97
  • 25 Zhao H, Guo L, Zhao H. et al. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget 2015; 6: 5022-5040
  • 26 Scala S. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis – Untapped Potential in the Tumor Microenvironment. Clinical cancer research: an official journal of the American Association for Cancer Research 2015; 21: 4278-4285
  • 27 Brave M, Farrell A, Ching LinS. et al. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology 2010; 78: 282-288
  • 28 Pernas S, Martin M, Kaufman PA. et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol 2018; 19: 812-824
  • 29 Jacobson O, Weiss ID, Szajek L. et al. 64Cu-AMD3100 – a novel imaging agent for targeting chemokine receptor CXCR4. Bioorg Med Chem 2009; 17: 1486-1493
  • 30 Nimmagadda S, Pullambhatla M, Stone K. et al. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer research 2010; 70: 3935-3944
  • 31 De Silva RA, Peyre K, Pullambhatla M. et al. Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med 2011; 52: 986-993
  • 32 Hartimath SV, van Waarde A, Dierckx RA. et al. Evaluation of N-[(11)C]methyl-AMD3465 as a PET tracer for imaging of CXCR4 receptor expression in a C6 glioma tumor model. Mol Pharm 2014; 11: 3810-3817
  • 33 Jacobson O, Weiss ID, Kiesewetter DO. et al. PET of tumor CXCR4 expression with 4-18F-T140. J Nucl Med 2010; 51: 1796-1804
  • 34 George GP, Stevens E, Aberg O. et al. Preclinical evaluation of a CXCR4-specific (68)Ga-labelled TN14003 derivative for cancer PET imaging. Bioorg Med Chem 2014; 22: 796-803
  • 35 Gourni E, Demmer O, Schottelius M. et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2011; 52: 1803-1810
  • 36 Demmer O, Gourni E, Schumacher U. et al. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 2011; 6: 1789-1791
  • 37 Wester HJ, Keller U, Schottelius M. et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 2015; 5: 618-630
  • 38 Philipp-Abbrederis K, Herrmann K, Knop S. et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 2015; 7: 477-487
  • 39 Thackeray JT, Derlin T, Haghikia A. et al. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc Imaging 2015; 8: 1417-1426
  • 40 Hyafil F, Pelisek J, Laitinen I. et al. Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer 68Ga-Pentixafor for PET. J Nucl Med 2017; 58: 499-506
  • 41 Derlin T, Gueler F, Brasen JH. et al. Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. J Nucl Med 2017; 58: 1831-1837
  • 42 Bouter C, Meller B, Sahlmann CO. et al. (68)Ga-Pentixafor PET/CT Imaging of Chemokine Receptor CXCR4 in Chronic Infection of the Bone: First Insights. J Nucl Med 2018; 59: 320-326
  • 43 Vag T, Gerngross C, Herhaus P. et al. First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med 2016; 57: 741-746
  • 44 Lapa C, Kircher S, Schirbel A. et al. Targeting CXCR4 with [(68)Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma?. Oncotarget 2017; 8: 96732-96737
  • 45 Lapa C, Luckerath K, Rudelius M. et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer – initial experience. Oncotarget 2016; 7: 9288-9295
  • 46 Bluemel C, Hahner S, Heinze B. et al. Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clinical nuclear medicine 2017; 42: e29-e34
  • 47 Lapa C, Schreder M, Schirbel A. et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F]FDG and laboratory values. Theranostics 2017; 7: 205-212
  • 48 Herhaus P, Habringer S, Philipp-Abbrederis K. et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica 2016; 101: 932-940
  • 49 Mayerhoefer ME, Jaeger U, Staber P. et al. [68Ga]Ga-Pentixafor PET/MRI for CXCR4 Imaging of Chronic Lymphocytic Leukemia: Preliminary Results. Invest Radiol 2018; 53: 403-408
  • 50 Herhaus P, Habringer S, Vag T. et al. Response assessment with the CXCR4-directed positron emission tomography tracer [(68)Ga]Pentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI research 2017; 7: 51
  • 51 Lapa C, Luckerath K, Kircher S. et al. Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. British journal of haematology 2019; 184: 440-443
  • 52 Schottelius M, Osl T, Poschenrieder A. et al. [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics 2017; 7: 2350-2362
  • 53 Habringer S, Lapa C, Herhaus P. et al. Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics 2018; 8: 369-383
  • 54 Bodei L, Mueller-Brand J, Baum RP. et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. European journal of nuclear medicine and molecular imaging 2013; 40: 800-816
  • 55 Herrmann K, Schottelius M, Lapa C. et al. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. J Nucl Med 2016; 57: 248-251
  • 56 Swerdlow SH, Campo E, Pileri SA. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127: 2375-2390
  • 57 Lapa C, Herrmann K, Schirbel A. et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 2017; 7: 1589-1597
  • 58 Lapa C, Hanscheid H, Kircher M. et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B cell lymphoma. J Nucl Med 2018; 60: 60-64
  • 59 Weiberg D, Thackeray JT, Daum G. et al. Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using (68)Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. J Nucl Med 2018; 59: 266-272
  • 60 Li X, Kemmer L, Zhang X. et al. Anti-Inflammatory Effects on Atherosclerotic Lesions Induced by CXCR4-Directed Endoradiotherapy. Journal of the American College of Cardiology 2018; 72: 122-123
  • 61 Reiter T, Kircher M, Schirbel A. et al. Imaging of C-X-C Motif Chemokine Receptor CXCR4 Expression After Myocardial Infarction With [(68)Ga]Pentixafor-PET/CT in Correlation With Cardiac MRI. JACC Cardiovasc Imaging 2018; DOI: 10.1016/j.jcmg.2018.01.001.