TumorDiagnostik & Therapie 2019; 40(02): 113-120
DOI: 10.1055/a-0843-0059
Thieme Onkologie aktuell
© Georg Thieme Verlag KG Stuttgart · New York

Herausforderungen in der Immunonkologie

Defizite verbessern, Potenziale ausschöpfenChallenges in Immuno-OncologyPossibilities for Optimization
Alexander Shimabukuro-Vornhagen
1   Klinik I für Innere Medizin, Uniklinik Köln
,
Marion Subklewe
2   Medizinische Klinik und Poliklinik III, Klinikum der LMU München
,
Michael von Bergwelt-Baildon
2   Medizinische Klinik und Poliklinik III, Klinikum der LMU München
› Author Affiliations
Further Information

Publication History

Publication Date:
06 March 2019 (online)

Zusammenfassung

Mittlerweile haben mehrere unterschiedliche Immuntherapien Eingang in die klinische Routine gefunden – oft mit erstaunlichen Erfolgen. Infolgedessen hat sich die Immunonkologie innerhalb kürzester Zeit als Subspezialität der Onkologie fest etabliert. Damit sie aber ihr volles Potenzial für die Behandlung maligner Erkrankungen entfalten kann, müssen in Zukunft noch einige Hindernisse überwunden werden.

Abstract

Immuno-oncology has undoubtedly started a new era in the treatment of malignant diseases. Within a short time immunotherapeutic therapy concepts have become part of the standard therapy for many tumors. Already, immunotherapy is one of the most potent therapeutic options for the treatment of many malignancies. Despite its impressive achievements, there is still a significant need for improvement and many aspects of the practical application of immunotherapeutic modalities of therapy are unclear. If it succeeds in solving the challenges discussed here, immuno-oncology will certainly be one of the most important pillars of successful tumor therapy in the future. Immunotherapeutic combination therapies offer the opportunity to improve treatment outcomes. The immunological side effects of immunotherapy may sometimes be life-threatening, but if adequately treated they may be associated with a good prognosis. The development of predictive biomarkers is indispensable for effective immunotherapy. The costs of immuno-oncological therapies are sometimes very high. Therefore reasonable solutions must be found.

 
  • Literatur

  • 1 Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. Semin Cancer Biol 2017; DOI: 10.1016/j.semcancer.2017.10.001.
  • 2 Liu H, Saxena A, Sidhu SS. et al. Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds. Front Immunol 2017; 8: 38
  • 3 Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9: 182-212
  • 4 Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science 2018; 359: 1355-1360
  • 5 Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017; 114: 79-101
  • 6 Wolchok JD, Kluger H, Callahan MK. et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369: 122-133
  • 7 D’Angelo SP, Mahoney MR, Van Tine BA. et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 2018; 19: 416-426
  • 8 Ngwa W, Irabor OC, Schoenfeld JD. et al. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18 (05) 313-322 . doi:10.1038/nrc.2018.6
  • 9 Ravi R, Noonan KA, Pham V. et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun 2018; 9: 741
  • 10 Samson A, Scott KJ, Taggart D. et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med 2018; 10 (422) DOI: 10.1126/scitranslmed.aam7577.
  • 11 Zitvogel L, Ma Y, Raoult D. et al. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 2018; 359: 1366-1370
  • 12 Gödel P, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. Understanding cytokine release syndrome. Intensive Care Med 2018; 44 (03) 371-373 . doi:10.1007/s00134-017-4943-5
  • 13 Snyder A, Makarov V, Merghoub T. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371: 2189-2199
  • 14 Teachey DT, Lacey SF, Shaw PA. et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discov 2016; 6 (06) 664-679 . doi:10.1158/2159-8290
  • 15 Chen K, Ye H, Lu X-J. et al. Towards In Silico Prediction of the Immune-Checkpoint Blockade Response. Trends Pharmacol Sci 2017; 38: 1041-1051
  • 16 Bach PB, Giralt SA, Saltz LB. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug. JAMA 2017; 318: 1861-1862
  • 17 Carrera PM, Kantarjian HM, Blinder VS. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J Clin 2018; 68: 153-165
  • 18 Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol 2018; 29: 84-91
  • 19 Hodi FS, Ballinger M, Lyons B. et al. Immune-Modified Response Evaluation Criteria In Solid Tumors (imRECIST): Refining Guidelines to Assess the Clinical Benefit of Cancer Immunotherapy. J Clin Oncol 2018; 36: 850-858
  • 20 Ritchie G, Gasper H, Man J. et al. Defining the Most Appropriate Primary End Point in Phase 2 Trials of Immune Checkpoint Inhibitors for Advanced Solid Cancers: A Systematic Review and Meta-analysis. JAMA Oncol 2018; 4 (04) 522-528 . doi:10.1001/jamaoncol.2017.5236