Neuroradiologie Scan 2019; 09(04): 323-348
DOI: 10.1055/a-0873-6869
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Spinale Hämatome: Was der Radiologe wissen muss

Spinal hematomas: what a radiologist needs to know
Jennifer L. Pierce
,
Joseph H. Donahue
,
Nicholas C. Nacey
,
Cody R. Quirk
,
Michael T. Perry
,
Nicholas Faulconer
,
Gene A. Falkowski
,
Michael D. Maldonado
,
Catherine A. Shaeffer
,
Francis H. Shen

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. med. Michael Forsting, Essen.
Further Information

Publication History

Publication Date:
14 November 2019 (online)

Spinale Hämatome müssen wegen ihrer klinischen Auswirkungen von anderen Pathologien des Markes unterschieden werden, damit die Patienten in geeigneter Weise und zügig behandelt werden können und das Risiko einer bleibenden neurologischen Schädigung gesenkt wird. Diagnostisch spielt die MRT dabei eine entscheidende Rolle. Der folgende Beitrag fasst die erforderlichen Kenntnisse kompakt und verständlich zusammen.

Abstract

Spinal hematomas are a frequent indication for radiologic evaluation and can be a diagnostic dilemma for many radiologists and surgeons. There are four types of spinal hematomas: epidural, subdural, subarachnoid, and intramedullary (spinal cord) hematomas. Because they differ by their location in relationship to the meningeal membranes and spinal cord, unique radiologic appearances can be recognized to distinguish these types of spinal hemorrhage. Anatomic knowledge of the spinal compartments is essential to the radiologist for confident imaging diagnosis of spinal hematomas and to specify correct locations. MRI is the modality of choice to diagnose the location of the hematoma, characterize important features such as age of the hemorrhage, and detect associated injury or disease. Each type of spinal hematoma has imaging patterns and characteristics that distinguish it from the others, as these specific spinal compartments displace and affect the adjacent anatomic structures. Early detection and accurate localization of spinal hematomas is critical for the surgeon to address the proper treatment and surgical decompression, when necessary, as neurologic deficits may otherwise become permanent.

Kernaussagen
  • Die 3 Rückenmarkhäute Dura mater, Arachnoidea mater und Pia mater umhüllen das Rückenmark, die Nervenwurzeln und die Cauda equina. Diese Häute bilden die Grenzen der 4 als Epidural-, Subdural- und Subarachnoidalraum sowie Rückenmark- oder intramedullärer Raum definierten Räume.

  • Bei der Abklärung eines epiduralen Hämatoms ist es sinnvoll, auf eine Auslöschung des epiduralen Fettes, eine Verdrängung der Dura mater und eine Kompression des Thekalsacks innerhalb des Spinalkanals zu achten.

  • Subdurale Hämatome befinden sich innerhalb der Wand des Thekalsacks. Das epidurale Fettgewebe ist erhalten und es besteht keine Verdrängung der hypointensen Dura mater nach innen. Das erleichtert die Unterscheidung zwischen subdural und epidural gelegenen Flüssigkeitsansammlungen.

  • Die Feststellung, dass eine Flüssigkeitsansammlung primär im Subduralraum und nicht im Epiduralraum lokalisiert ist, hilft dem Chirurgen, da es bedeutet, dass die Dura mater eröffnet werden muss (Durotomie), um die Flüssigkeitsansammlung zu entfernen.

  • Eine Schichtung von Blutprodukten im Subarachnoidalraum zeigt sich typischerweise in der abhängigen unteren Lendenwirbelsäule. Es besteht keine externe Kompression der Dura mater oder des Thekalsacks und das epidurale Fett erscheint normal.

 
  • Literatur

  • 1 Bozzo A, Marcoux J, Radhakrishna M. et al. The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma 2011; 28: 1401-1411
  • 2 Kreppel D, Antoniadis G, Seeling W. Spinal hematoma: a literature survey with meta-analysis of 613 patients. Neurosurg Rev 2003; 26: 1-49
  • 3 Bradley Jr WG. MR appearance of hemorrhage in the brain. Radiology 1993; 189: 15-26
  • 4 Thiel W. Supplement to the conservation of an entire cadaver according to W. Thiel [in German]. Ann Anat 2002; 184: 267-269
  • 5 Sakka L, Gabrillargues J, Coll G. Anatomy of the spinal meninges. Oper Neurosurg (Hagerstown) 2016; 12: 168-188
  • 6 Groen GJ, Baljet B, Drukker J. The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir (Wien) 1988; 92: 39-46
  • 7 Nicholas DS, Weller RO. The fine anatomy of the human spinal meninges: a light and scanning electron microscopy study. J Neurosurg 1988; 69: 276-282
  • 8 Ceylan D, Tatarlı N, Abdullaev T. et al. The denticulate ligament: anatomical properties, functional and clinical significance. Acta Neurochir (Wien) 2012; 154: 1229-1234
  • 9 Westbrook JL. Anatomy of the epidural space. Anaesth Intensive Care Med 2012; 13: 551-554
  • 10 Grassner L, Grillhösl A, Griessenauer CJ. et al. Spinal meninges and their role in spinal cord injury: a neuroanatomical review. J Neurotrauma 2018; 35: 403-410
  • 11 Kasliwal MK, Shannon LR, OʼToole JE. et al. Inverted Mercedes Benz sign in lumbar spinal subdural hematoma. J Emerg Med 2014; 47: 692-693
  • 12 Sullivan JT, Grouper S, Walker MT. et al. Lumbosacral cerebrospinal fluid volume in humans using three-dimensional magnetic resonance imaging. Anesth Analg 2006; 103: 1306-1310
  • 13 Grossman RI, Gomori JM, Goldberg HI. et al. MR imaging of hemorrhagic conditions of the head and neck. RadioGraphics 1988; 8: 441-454
  • 14 Braun P, Kazmi K, Nogués-Meléndez P. et al. MRI findings in spinal subdural and epidural hematomas. Eur J Radiol 2007; 64: 119-125
  • 15 Holtås S, Heiling M, Lönntoft M. Spontaneous spinal epidural hematoma: findings at MR imaging and clinical correlation. Radiology 1996; 199: 409-413
  • 16 Yáñez ML, Miller JJ, Batchelor TT. Diagnosis and treatment of epidural metastases. Cancer 2017; 123: 1106-1114
  • 17 Bakker NA, Veeger NJ, Vergeer RA. et al. Prognosis after spinal cord and cauda compression in spontaneous spinal epidural hematomas. Neurology 2015; 84: 1894-1903
  • 18 Chang FC, Lirng JF, Chen SS. et al. Contrast enhancement patterns of acute spinal epidural hematomas: a report of two cases. AJNR Am J Neuroradiol 2003; 24: 366-369
  • 19 Lee JW, Cho EY, Hong SH. et al. Spinal epidural hemangiomas: various types of MR imaging features with histopathologic correlation. AJNR Am J Neuroradiol 2007; 28: 1242-1248
  • 20 Numaguchi Y, Rigamonti D, Rothman MI. et al. Spinal epidural abscess: evaluation with gadolinium-enhanced MR imaging. RadioGraphics 1993; 13: 545-559 ; discussion 559-560
  • 21 Al-Mutair A, Bednar DA. Spinal epidural hematoma. J Am Acad Orthop Surg 2010; 18: 494-502
  • 22 Shin JJ, Kuh SU, Cho YE. Surgical management of spontaneous spinal epidural hematoma. Eur Spine J 2006; 15: 998-1004
  • 23 Boukobza M, Haddar D, Boissonet M. et al. Spinal subdural haematoma: a study of three cases. Clin Radiol 2001; 56: 475-480
  • 24 Gordon WE, Kimball BY, Arthur AS. Traumatic lumbar spinal subdural hematoma. Interdiscip Neurosurg 2014; 1: 123-127
  • 25 Krishnan P, Banerjee TK. Classical imaging findings in spinal subdural hematoma: „Mercedes-Benz“ and „cap“ signs. Br J Neurosurg 2016; 30: 99-100
  • 26 Post MJ, Becerra JL, Madsen PW. et al. Acute spinal subdural hematoma: MR and CT findings with pathologic correlates. AJNR Am J Neuroradiol 1994; 15: 1895-1905
  • 27 Chen MH, Chen MH, Huang JS. Cervical subdural empyema following acupuncture. J Clin Neurosci 2004; 11: 909-911
  • 28 Chen SZ, Shimer AL, Nacey NC. Spinal subdural abscess following repeat lumbar microdiscectomy: a case report of imaging findings for a rare infection. Clin Imaging 2017; 44: 74-78
  • 29 Lim HY, Choi HJ, Kim S. et al. Chronic spinal subdural abscess mimicking an intradural-extramedullary tumor. Eur Spine J 2013; 22 (Suppl. 03) S497-S500
  • 30 Inamasu J, Guiot BH. Intracranial hypotension with spinal pathology. Spine J 2006; 6: 591-599
  • 31 Darwish HA, Oldfield EH. Lumbar subdural cerebrospinal fluid collection with acute cauda equina syndrome after posterior fossa decompression for Chiari malformation type I: case report. J Neurosurg Spine 2016; 25: 328-331
  • 32 Elder BD, Ishida W, Goodwin RC. et al. Iatrogenic spinal subdural extra-arachnoid hygroma following uncomplicated lumbar decompression. Cureus 2017; 9: e1171
  • 33 Yi CK, Biega TJ, Burgos RM. Spontaneous resolution of idiopathic lumbar subdural hygroma on CT myelography and lumbar spine MRI. BMJ Case Rep 2014; DOI: 10.1136/bcr-2014-206223.
  • 34 Russo S, Belli A, Eynon A. et al. Post-traumatic spinal hygroma causing cord compression in type III odontoid fracture with vertical atlantoaxial instability. Spine 2017; 42: E1092-E1094
  • 35 Kamo M, Watanabe Y, Numaguchi Y. et al. Spinal subdural hematoma mimicking epidural lipomatosis. Magn Reson Med Sci 2012; 11: 197-199
  • 36 Silbergleit R, Brunberg JA, Patel SC. et al. Imaging of spinal intradural arachnoid cysts: MRI, myelography and CT. Neuroradiology 1998; 40: 664-668
  • 37 Anderson TL, Morris JM, Wald JT. et al. Imaging appearance of advanced chronic adhesive arachnoiditis: a retrospective review. AJR Am J Roentgenol 2017; 209: 648-655
  • 38 Domenicucci M, Ramieri A, Ciappetta P. et al. Nontraumatic acute spinal subdural hematoma: report of five cases and review of the literature. J Neurosurg 1999; 91: 65-73
  • 39 Germans MR, Coert BA, Majoie CBLM. et al. Yield of spinal imaging in nonaneurysmal, nonperimesencephalic subarachnoid hemorrhage. Neurology 2015; 84: 1337-1340
  • 40 Sather MD, Gibson MD, Treves JS. Spinal subarachnoid hematoma resulting from lumbar myelography. AJNR Am J Neuroradiol 2007; 28: 220-221
  • 41 Crossley RA, Raza A, Adams WM. The lumbar sedimentation sign: spinal MRI findings in patients with subarachnoid haemorrhage with no demonstrable intracranial aneurysm. Br J Radiol 2011; 84: 279-281
  • 42 Domenicucci M, Ramieri A, Paolini S. et al. Spinal subarachnoid hematomas: our experience and literature review. Acta Neurochir (Wien) 2005; 147: 741-750 ; discussion 750
  • 43 Niimi Y, Matsukawa H, Uchiyama N. et al. The preventive effect of endovascular treatment for recurrent hemorrhage in patients with spinal cord arteriovenous malformations. AJNR Am J Neuroradiol 2015; 36: 1763-1768
  • 44 Russell NA, Benoit BG. Spinal subdural hematoma: a review. Surg Neurol 1983; 20: 133-137
  • 45 Leep Hunderfund AN, Wijdicks EF. Intramedullary spinal cord hemorrhage (hematomyelia). Rev Neurol Dis 2009; 6: E54-E61
  • 46 Ramón S, Domínguez R, Ramírez L. et al. Clinical and magnetic resonance imaging correlation in acute spinal cord injury. Spinal Cord 1997; 35: 664-673
  • 47 Shah LM, Flanders AE. Update on new imaging techniques for trauma. Neurosurg Clin N Am 2017; 28: 1-21
  • 48 Flanders AE, Schaefer DM, Doan HAT. et al. Acute cervical spine trauma: correlation of MR imaging findings with degree of neurologic deficit. Radiology 1990; 177: 25-33
  • 49 Leypold BG, Flanders AE, Burns AS. The early evolution of spinal cord lesions on MR imaging following traumatic spinal cord injury. AJNR Am J Neuroradiol 2008; 29: 1012-1016
  • 50 Boldin C, Raith J, Fankhauser F. et al. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine 2006; 31: 554-559
  • 51 Miyanji F, Furlan JC, Aarabi B. et al. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome – prospective study with 100 consecutive patients. Radiology 2007; 243: 820-827
  • 52 Rogers SR, Phalke VV, Anderson J. et al. HEALSME: differential diagnosis for intramedullary spinal cord lesions. Neurographics 2012; 2: 13-26
  • 53 Shah LM, Salzman KL. Imaging of spinal metastatic disease. Int J Surg Oncol 2011; 2011: 769753
  • 54 Nemoto Y, Inoue Y, Tashiro T. et al. Intramedullary spinal cord tumors: significance of associated hemorrhage at MR imaging. Radiology 1992; 182: 793-796
  • 55 Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. RadioGraphics 2000; 20: 1721-1749
  • 56 de San Pedro JR, Rodríguez FA, Níguez BF. et al. Massive hemorrhage in hemangioblastomas: literature review. Neurosurg Rev 2010; 33: 11-26
  • 57 Baker KB, Moran CJ, Wippold 2nd FJ. et al. MR imaging of spinal hemangioblastoma. AJR Am J Roentgenol 2000; 174: 377-382
  • 58 Diehn FE, Rykken JB, Wald JT. et al. Intramedullary spinal cord metastases: prognostic value of MRI and clinical features from a 13-year institutional case series. AJNR Am J Neuroradiol 2015; 36: 587-593
  • 59 Krings T. Vascular malformations of the spine and spinal cord: anatomy, classification, treatment. Clin Neuroradiol 2010; 20: 5-24
  • 60 Krings T, Lasjaunias PL, Hans FJ. et al. Imaging in spinal vascular disease. Neuroimaging Clin N Am 2007; 17: 57-72
  • 61 Dehdashti AR, Da Costa LB, terBrugge KG. et al. Overview of the current role of endovascular and surgical treatment in spinal dural arteriovenous fistulas. Neurosurg Focus 2009; 26: E8
  • 62 Liang JT, Bao YH, Zhang HQ. et al. Management and prognosis of symptomatic patients with intramedullary spinal cord cavernoma: clinical article. J Neurosurg Spine 2011; 15: 447-456
  • 63 Labauge P, Bouly S, Parker F. et al. Outcome in 53 patients with spinal cord cavernomas. Surg Neurol 2008; 70: 176-181 ; discussion 181
  • 64 Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009; 30: 639-648
  • 65 Patsalides A, Knopman J, Santillan A. et al. Endovascular treatment of spinal arteriovenous lesions: beyond the dural fistula. AJNR Am J Neuroradiol 2011; 32: 798-808
  • 66 Veerapen RJ, Sbeih IA, OʼLaoire SA. Surgical treatment of cryptic AVMʼs and associated hematoma in the brain stem and spinal cord. J Neurosurg 1986; 65: 188-193
  • 67 Weinzierl MR, Krings T, Korinth MC. et al. MRI and intraoperative findings in cavernous haemangiomas of the spinal cord. Neuroradiology 2004; 46: 65-71
  • 68 Signorelli F, Della Pepa GM, Sabatino G. et al. Diagnosis and management of dural arteriovenous fistulas: a 10 years single-center experience. Clin Neurol Neurosurg 2015; 128: 123-129