Dialyse aktuell 2019; 23(06): 252-256
DOI: 10.1055/a-0954-7064
Schwerpunkt | Nephrologie
© Georg Thieme Verlag Stuttgart · New York

Nierenregeneration

Von den Grundlagen bis zu den therapeutischen Möglichkeiten der Stammzelltherapie
Christopher Gohlisch
1   Med. Klinik mit SP Nephrologie und Internistische Intensivtherapie, Standort Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin
,
van der Giet Markus
1   Med. Klinik mit SP Nephrologie und Internistische Intensivtherapie, Standort Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
23 July 2019 (online)

ZUSAMMENFASSUNG

Die Prävalenz der terminalen Niereninsuffizienz ist progredient. Bisherige Therapien bezogen sich auf die Therapie der Grunderkrankung, eine Nierenersatztherapie oder eine Nierentransplantation. Eine Ergänzung hierzu bietet die aktuelle Forschung zur Nierenregeneration, die auf Erkenntnissen der Embryologie und der Regeneration spezifischer Zellen in den unterschiedlichen Nierensegmenten beruht. Die Regeneration der Niere wird durch verschiedene Mechanismen beeinflusst. Das Immunsystem nimmt dabei eine wichtige Rolle ein und kann therapeutisch beeinflusst werden. Auch Stammzellen können zur regenerativen Therapie genutzt werden und ermöglichen mittlerweile sogar die Bildung von Organoiden.

 
  • Literatur

  • 1 Collins AJ, Foley RN, Herzog C. et al Excerpts from the US Renal Data System 2009 Annual Data Report. Am J Kidney Dis 2010; 55 Suppl (Suppl. 01) S1-S420 A6-7. doi:10.1053/j.ajkd.2009.10.009
  • 2 Diep CQ, Ma D, Deo RC. et al Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 2011; 470: 95-100 doi:10.1038/nature09669
  • 3 Kurtzeborn K, Cebrian C, Kuure S. Regulation of Renal Differentiation by Trophic Factors. Front Physiol 2018; 9: 1588 doi:10.3389/fphys.2018.01588
  • 4 Poulsom R, Forbes SJ, Hodivala-Dilke K. et al Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 2001; 195: 229-235 doi:10.1002/path.976
  • 5 Terada N, Hamazaki T, Oka M. et al Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542-545 doi:10.1002/path.976
  • 6 Humphreys BD, Czerniak S, DiRocco DP. et al Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A 2011; 108: 9226-9231 doi:10.1073/pnas.1100629108
  • 7 Wanner N, Hartleben B, Herbach N. et al Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 2014; 25: 707-716 doi:10.1681/ASN.2013050452
  • 8 Eng DG, Sunseri MW, Kaverina NV. et al Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 2015; 88: 999-1012 doi:10.1038/ki.2015.152
  • 9 Lasagni L, Angelotti ML, Ronconi E. et al Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular Disease Remission and Can Be Pharmacologically Enhanced. Stem Cell Reports 2015; 5: 248-263 doi:10.1016/j.stemcr.2015.07.003
  • 10 Starke C, Betz H, Hickmann L. et al Renin lineage cells repopulate the glomerular mesangium after injury. J Am Soc Nephrol 2015; 26: 48-54 doi:10.1681/ASN.2014030265
  • 11 Pippin JW, Kaverina NV, Eng DG. et al Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease. Am J Physiol Renal Physiol 2015; 309: F341-F358 doi:10.1152/ajprenal.00438.2014
  • 12 Kusaba T, Lalli M, Kramann R. et al Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A 2014; 111: 1527-1532 doi:10.1073/pnas.1310653110
  • 13 Humphreys BD, Valerius MT, Kobayashi A. et al Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008; 2: 284-291 doi:10.1016/j.stem.2008.01.014
  • 14 Berger K, Bangen JM, Hammerich L. et al Origin of regenerating tubular cells after acute kidney injury. Proc Natl Acad Sci U S A 2014; 111: 1533-1538 doi:10.1073/pnas.1316177111
  • 15 Smeets B, Boor P, Dijkman H. et al Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol 2013; 229: 645-659 doi:10.1002/path.4125
  • 16 Lindgren D, Boström AK, Nilsson K. et al Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 2011; 178: 828-837 doi:10.1016/j.ajpath.2010.10.026
  • 17 Rinkevich Y, Montoro DT, Contreras-Trujillo H. et al In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep 2014; 7: 1270-1283 doi:10.1016/j.celrep.2014.04.018
  • 18 Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 2005; 115: 1756-1764 doi:10.1172/JCI23015
  • 19 Ma H, Saenko M, Opuko A. et al Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction. Kidney Int 2009; 76: 868-876 doi:10.1038/ki.2009.304
  • 20 Maeshima A, Maeshima K, Nojima Y, Kojima I. Involvement of Pax-2 in the action of activin A on tubular cell regeneration. J Am Soc Nephrol 2002; 13: 2850-2859 doi:10.1097/01.asn.0000035086.93977.e9
  • 21 Bonventre JV. Maladaptive proximal tubule repair: cell cycle arrest. Nephron Clin Pract 2014; 127: 61-64 doi:10.1159/000363673
  • 22 Polichnowski AJ, Lan R, Geng H. et al Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J Am Soc Nephrol 2014; 25: 1496-1507 doi:10.1681/ASN.2013040359
  • 23 Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol 2015; 11: 88-101 doi:10.1038/nrneph.2014.180
  • 24 Tadagavadi RK, Reeves WB. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J Am Soc Nephrol, 2010; 21: 53-63 doi: 10.1681/ASN.2009040407
  • 25 Kulkarni OP, Hartter I, Mulay SR. et al Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J Am Soc Nephrol 2014; 25: 978-989 doi:10.1681/ASN.2013050528
  • 26 Lee S, Huen S, Nishio H. et al Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 2011; 22: 317-326 doi:10.1681/ASN.2009060615
  • 27 Kinsey GR, Sharma R, Huang L. et al Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol 2009; 20: 1744-1753 doi:10.1681/ASN.2008111160
  • 28 Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant 2016; 31: 1062-1069 doi:10.1093/ndt/gfv317
  • 29 Alikhan MA, Jones CV, Williams TM. et al Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol 2011; 179: 1243-1256 doi:10.1016/j.ajpath.2011.05.037
  • 30 Stremska ME, Jose S, Sabapathy V. et al IL233, A Novel IL-2 and IL-33 Hybrid Cytokine, Ameliorates Renal Injury. J Am Soc Nephrol 2017; 28: 2681-2693 doi:10.1681/ASN.2016121272
  • 31 Toyohara T, Mae S, Sueta S. et al Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Transl Med 2015; 4: 980-992 doi:10.5966/sctm.2014-0219
  • 32 van den Berg CW, Ritsma L, Avramut MC. et al Renal Subcapsular Transplantation of PSC-Derived Kidney Organoids Induces Neo-vasculogenesis and Significant Glomerular and Tubular Maturation In Vivo. Stem Cell Reports 2018; 10: 751-765 doi:10.1016/j.stemcr.2018.01.041
  • 33 Angelotti ML, Ronconi E, Ballerini L. et al Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 2012; 30: 1714-1725 doi:10.1002/stem.1130