Structured Reporting in Cross-Sectional Imaging of the Heart: Reporting Templates for CMR Imaging of Cardiomyopathies (Myocarditis, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Siderosis)

Strukturierte Befundung in der Schnittbilddiagnostik des Herzens: Befundvorlagen für die MRT bei Kardiomyopathien (Myokarditis, dilatative Kardiomyopathie, hypertrophe Kardiomyopathie, arrhythmogene rechtsventrikuläre Kardiomyopathie und Siderose)

Authors
Alexander Christian Bunck¹, Bettina Baeßler¹,², Christian Ritter³, Jan Robert Kröger¹, Thorsten Persigehl¹, Daniel Pinto dos Santos¹, Michael Steinmetz⁴, Adelheid Niehaus⁵, Fabian Bamberg⁶, Meinrad Beer⁷, Sebastian Ley⁶, Klaus Tiemann⁹, Philipp Beerbaum¹⁰, David Maintz¹, Joachim Lotz³

Affiliations
1 Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
2 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
3 Department of Radiology, University Medical Center Göttingen, Göttingen, Germany
4 Department of Pediatric Cardiology and Intensive Care Medicine, University Medical Center Göttingen, Göttingen, Germany
5 Department of Thoracic, Cardiac and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
6 Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
7 Department of Radiology, University-Hospital Ulm, Germany
8 Department of Radiology, Internistisches Klinikum München-Süd, München, Germany
9 Clinic of Internal Medicine I, Klinikum rechts der Isar der Technischen Universität München, München, Germany
10 Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany

Key words
structured reporting, heart, cardiomyopathy, CMR

Received 17.12.2018
Accepted 01.08.2019

ABSTRACT
Background Structured reports have numerous benefits through standardizing the way imaging findings are reported and communicated. Nevertheless, the adoption of structured reports in everyday radiological practice is still limited. In view of the irrefutable benefits, various national and international radiological societies have started initiatives which aim at promoting a broader use of structured reports. Up to now, no consented templates in German language existed for the reporting of cross-sectional imaging studies of the heart.

Method Upon invitation of the working group for Cardiovascular Imaging of the German Society of Radiology a panel of radiologists, cardiologists, pediatric cardiologists and cardiothoracic surgeons, experts on the field of cardiovascular imaging and structured reporting, met for two interdisciplinary consensus meetings at the University Hospital Cologne in 2018. The aim of these meetings was to develop and agree

Bibliography
DOI https://doi.org/10.1055/a-0998-4116
Published online: 9.10.2019
Fortschr Röntgenstr 2020; 192: 27–37
© Georg Thieme Verlag KG, Stuttgart · New York
ISSN 1438-9029

Correspondence
Priv.-Doz. Dr. med. Alexander Christian Bunck
Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50967 Cologne, Germany
Tel.: ++ 49/2 21/47 88 20 35
Fax: ++ 49/2 21/4 78 42 13
alexander.bunck@uk-koeln.de
Structured Reporting – Background

To date, the majority of radiological reports are written in the form of non-standardized free text. A number of studies have demonstrated that the use of standardized reporting templates offer advantages for both the reporting and communication of findings [1–5]. Thematic structure, pre-formulated text modules, categorized diagnoses and uniform terminology can increase the time efficiency in the preparation of reports, while standardization can help ensure consistent quality with respect to comprehensibility, clarity, completeness and clinical relevance of the reports [6, 7].

To take this into account, RSNA launched two initiatives with the “RadLex Initiative” in 2005 and the “Radiology Reporting Initiative” in 2008 with the aim of harmonizing the terminology used in radiology, promoting the use of structured reporting templates and thus increasing the overall quality of radiological reports [8]. RadLex serves as a standardized ontology and encyclopedia of radiological terms and was recently translated into German by the German Radiological Society (DRG) in cooperation with RSNA [9]. Likewise, the European Radiological Society (ESR) has also joined the initiative for structured reporting and has established the goal of developing reports in different national languages [6]. Existing reporting templates of RSNA and ESR are made available on the open platform www.radreport.org; they are thematically organized, freely accessible in the HTML/IHE MRRT format [10] and available for general use.

In a joint statement published in 2009, numerous organizations in the field of cardiovascular medicine also clearly expressed...
their support for the use of structured reporting [7]. The initial basic recommendations on the structure and content of reports on MR cardiovascular examinations were published in the same year by the Society of Cardiovascular Magnetic Resonance (SCMR) [11].

However, the number of templates currently available on the www.radreport.org platform in the area of cardiac diagnostics is still limited, with respect to both content and themes. Up to date, no German templates available.

In Germany, the board of directors of the DRG has made the promotion of structured reporting one of that organization’s central projects for the coming years [12]. The working groups of the various specialty areas have been tasked with defining reporting templates and their medical content. Technical support for this project will be provided by the Information Technology working group of the DRG. After formatting in HTML 5/IHE MRRt, the developed templates will be made freely available on the DRG homepage www.befundung.drg.de.

Initiative for the Development of Reporting Templates for Cardiac Cross-sectional Imaging Diagnostics

Against this background, board members and representatives of the working group for Cardiac and Vascular Diagnostics of the DRG agreed during the 10th Cardiagnostic Days in Leipzig, Germany, on the joint development of proposals for reporting templates for cross-sectional imaging of the heart. At the invitation of the working group, two consensus meetings were held at the University Hospital Cologne, Germany in 2018 with the participation of the listed authors. During these meetings experts from the fields of cardiovascular diagnostics and structured reporting jointly developed a total of 11 reporting templates for various examination protocols and clinical pathologies in the field of cardiac MRI and CT diagnostics. The authors clearly preferred a systematic orientation towards modalities, examination protocols and clinical pathologies rather than a generic approach with the elaboration of only a few general reporting templates, since usually the examination protocols in MRI and CT diagnostics are also oriented towards specific suspected diagnoses and clinical issues.

In total, 11 templates were developed for the following clinical pathologies and examination protocols: myocarditis, dilatative cardiomyopathy, hypertrophic (obstructive) cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy (ARVC), siderosis, ischemia and viability diagnostics, tetralogy of Fallot, aortic coarctation, coronary CT, TAVI CT.

All templates were approved by consensus of all involved authors. The templates do not contain any recommendations regarding examination protocols. Recommendations on this matter, as well as on image interpretation and quantitative analysis can be found in international guidelines, such as those of the SCMR [13–16].

Report Contents

Important, integral components of a report include clinical information on the patient, the justifying indication and clinical question derived from this, as well as the date and time of the examination; these should be presented first in the template [11].

The reporting templates presented in this publication comprise the thematic complex of cardiomyopathies including secondary forms of myocardial functional impairment as a result of cardiac siderosis and myocarditis.

The contents of the templates are based on the recommendations of the SCMR [11], current clinical practice, the present state of scientific knowledge [17] as well as in the case of ARVD and myocarditis on internationally published diagnostic standards. These are laid down in the modified Task Force Criteria for ARVD published in 2010 and in the Lake Louise Criteria revised in 2018 (Lake Louise Criteria II) [18–20]. The terminology reflects that used by RadLex in its current German-language version (www.radlex.org).

Each of the reporting templates is divided into the sections Technique, Patient Characteristics, the actual report sections Morphology, Functional Analysis, Tissue Characterization and Additional Findings as well as the Conclusion. In the chosen approach, a distinction is made between a “General” part and a “Specific” part.

The “General” part of the report is intended to precede a “Specific” part to be selected. The selection of the specific part depends mainly on the case history and the related clinical question or, in individual cases, also on the findings identified on image analysis and the derived (suspected) diagnosis. In the case of more complex findings, several specific parts can also be combined in a modular manner. Depending on the pathology, the general part can be adapted, as outlined in the explanations of the general part (items 4, 8, 9 and 14).

From the authors’ point of view, this approach also reflects the way a radiologist would select and specify an appropriate MR imaging protocol in everyday clinical practice.

In the authors’ opinion, the technical part should contain not only the field strength and list of the acquired sequences in the corresponding orientations but also the software used for image analysis, the source of the normal values for quantitative parameters as well as the quantity and type of contrast medium used.

In a 2015 review article, Kawel-Boehm et al. compiled the normal values for adults and children published in various studies which can serve as a reference for the quantitative values obtained with MRI of the heart [21]. However, assuming a representative control cohort, normal values can also be adapted to local conditions and new scientific findings. In this case, normal values should be chosen as a function of the age and sex of the patient. Particularly in the context of left ventricular volumetry, when selecting these standard values it must be taken into account whether the evaluation software assigns the papillary muscle and muscle trabecula to the ventricular cavum or the myocardial mass [16, 21].

The use and reporting of T1 and T2 relaxation times of the myocardium determined by mapping techniques and the derived parameter extracellular volume (ECV) in the findings section are
regarded as optional by the authors and require normal values from the examiner’s own representative control cohorts for the locally-used scanner and sequence type. In this respect, reference is made explicitly to the recommendations of the SCMR [22]. Despite known limitations, the use of mapping techniques is becoming increasingly important and widespread due to increasing evidence. This circumstance is also taken into account in the currently revised Lake Louise criteria [20] and supports, in the authors’ opinion, the optional inclusion into the findings section.

The amount and type of contrast agent used, and in the case of first-pass perfusion images, the injection rate, can have a relevant influence on image contrast and image artifacts due to the different concentrations and relaxivities of the contrast agents as well as the field strength, so that these should be listed in the technique section [11, 23–25].

In the patient baseline profile section, gender, height, weight and body surface should be documented so that the quantitative values collected in the functional analysis can be normalized to the individual body surface.

The patient’s ability to cooperate, heart function and rate can have a considerable influence on the image quality of the acquired MR images. Since reduced image quality can sometimes considerably limit the interpretation of the findings, the quality of the acquired images should be briefly commented on at the beginning of the findings section. If the image quality does not permit a conclusive assessment of the findings, this should also be mentioned in the final conclusion.

The found consensus on the presentation of functional parameters and specific morphological features varies depending on the significance for the respective clinical question or the pathology. Regionally-limited abnormalities such as wall movement disorders should be assigned to the ventricle segment (apex, apical, midventricular, basal) and the myocardial segment (basal and midventricular; anterior, anterolateral, inferolateral, inferior, inferoseptal, anteroseptal or apical: anterior, lateral, inferior, septal) according to the 17-segment model of the American Heart Association – AHA [26]. The assignment of regional findings to the right ventricle can be done according to the 5-segment model of te Riele et al. (apex, inferior, marginal, anterior, RVOT (right ventricular outflow tract)) [27].

In contrast to normokinesia, the semi-quantitative assessment of the severity of regional wall movement disorders should be graded as follows: hyperkinesia (excessive contraction movement, i.e. increased systolic inward movement and increase in thickness); hypokinesia (reduced contraction movement, i.e. reduced systolic inward movement and increase in thickness); akinesia (lack of contraction movement), dyskinesia (outward movement of the affected segment in systole), aneurysm (protrusion of the affected segment in systole and diastole), tardokinesia (delayed contraction movement) and paradoxical wall movement (outward movement of the affected segment in systole, inward movement in diastole) [11, 16]. In the case of focal changes of the signal intensity of the myocardium, localization in the myocardium (subendocardium, intramyocardium, subepicardium or transmural) and extent should also be described [11, 16].

Summary and Outlook

The reporting templates presented here, developed in cooperation with clinical partners from cardiology, pediatric cardiology and cardiac surgery, are to be understood as a proposal of the DRG Cardiovascular working group for cardiac and vascular diagnostics, and are not to be considered binding or universally valid. The presentation of the 6 additional reporting templates developed among the authors is planned for follow-up publications. AGIT is currently converting the report forms presented here into HTML-5/IHE MRRT-compliant format and will make them available for free use on the www.befundung.drg.de website (for rights to use, see [28]). Comments on the proposed report forms can be sent at any time to agit-sr@googlegroups.com and will be forwarded by AGIT to the board of the working group for Cardiac and Vascular Diagnostics. The comments received, as well as new scientific evidence and guidelines, will be evaluated at regular intervals by the working group and any necessary changes will be incorporated by consensus into the reporting templates published on the DRG homepage www.befundung.drg.de.
General Part:

Case history: __________________________

Question: ____________________________

Date & time of examination: ___________

Technique:

Field strength: 1.5 / 3T

MR protocol: Sequences and planes

Evaluation software: Name and version

Source of normal values: Publication/own reference values

Contrast medium: Name and quantity

Baseline patient profile:

Gender: ___; Body weight: ___; Body size: ___m; Body surface (BSA): ___m²

Hematocrit: ___________

No prior study / Prior study dated from ___________

Findings

Image quality: Limitation: no / yes ___________

Morphology and functional analysis:

LV end-diastolic diameter (LV EDD) [mm]: (...)

LV end-diastolic volume index (LV EDVi) [ml/m²]: (...)

LV end-systolic volume index (LV ESVi) [ml/m²]: (...)

LV ejection fraction (LV EF) [%]: (...)

LV ED mass normed [g/m²]: (...)

Regional wall motion abnormalities LV: no / yes ___________

Optional:

Interventricular septum thickness (IVSD) [mm]: (...)

RV end-diastolic diameter (RV EDD) [mm]: (...)

RV end-diastolic volume index (RV EDVi) [ml/m²]: (...)

RV end-systolic volume index (RV ESVi) [ml/m²]: (...)

RV ejection fraction (RV EF) [%]: (...)

Regional wall motion abnormalities RV: no / yes ___________

Atrium size:

Visually normal size / pathological

Optional: quantitative end-systolic in 4-chamber view (longitudinal x transversal)

Right atrium: x mm (...)

Left atrium: x mm (...)

Atrial septum position:

normal/abnormal ___________

Heart valve pathology: not examined / no / yes ___________

Intercavitary thrombi: no / yes ___________

Pericardial effusion: no / yes; max. width: mm ___________

1,2 Case history details and medical issue, resulting in selection of examination protocol and the appropriate “Specific part” reporting template. Employing order-entry and radiological information systems, relevant information fields are generally filled out by the referring physician, and the findings are automatically pre-filled. If needed, adaptations should be performed or additional information added.

3 When using first-pass perfusion images, also injection rate should be stated. Only required when extracellular volume (ECV) is to be stated in Special Part (optional for “Myocarditis”, “DCM” reporting templates). Free text for description of artifacts and cause (e.g. arrhythmia, limited patient compliance), including resulting limitations on conclusive assessment. Indication of (age and gender-specific) normal values according to source cited in “Technique”, e.g. selection from [21]. Localization according to 17-segment model for left ventricle [26] or 5-segment model for right ventricle [27] and indication of severity (hyperkinesia, hypokinesia, akinesia, dyskinesia, aneurysm, tardokinesia, paradoxical movement). Particularly in the case of DCM, also indication of the presence of dyssynchrony (difference in timing of contractions in the septum and left ventricular lateral wall) should be included. In the authors’ view, providing this quantitative parameter in the case of absent abnormalities is optional for the reporting templates for H(O)CM, myocarditis and siderosis. In this case, the report should be expanded by “RV visually of normal size and systolic function”. Alternatively, the planimetric area in the 4-chamber view can also be specified here; measurements are to be taken at the time of maximum atrial filling. Free text for description of the pathology. Free text for description of the valve pathology, visual assessment of the severity. Localization. Circular vs. indication of localization and hemodynamic relevance. To be described in the Specific Part in combination with the “Myocarditis” reporting template.
Specific Part: “Myocarditis” reporting template

Tissue properties (modified according to Lake Louise Criteria II)

<table>
<thead>
<tr>
<th>Property</th>
<th>No / Yes</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial edema regional</td>
<td>no / yes</td>
<td></td>
</tr>
<tr>
<td>Myocardial edema global</td>
<td>no / yes</td>
<td></td>
</tr>
<tr>
<td>Late gadolinium enhancement (LGE) myocardium</td>
<td>no / yes</td>
<td></td>
</tr>
<tr>
<td>Late gadolinium enhancement (LGE) pericardium</td>
<td>no / yes</td>
<td></td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>no / max. width: (\text{mm})</td>
<td>()</td>
</tr>
<tr>
<td>Pericardial thickening (>3 mm)</td>
<td>no / yes</td>
<td></td>
</tr>
</tbody>
</table>

Optional:

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T2) mapping ([\text{ms}])</td>
<td>()</td>
</tr>
<tr>
<td>(T2) mapping native ([\text{ms}])</td>
<td>()</td>
</tr>
<tr>
<td>(T2) mapping post CM ([\text{ms}])</td>
<td>()</td>
</tr>
<tr>
<td>ECV ([%])</td>
<td>()</td>
</tr>
</tbody>
</table>

(with provision of sequence names in “Technique” section as well as reference values from own pool)

Additional findings

- No / Yes

Conclusion:

- MRI findings consistent with myocarditis: no / possible / yes

1. The revised MR diagnostic criteria for myocarditis published in 2018 differentiate between T2- and T1-based primary myocardial criteria and supportive criteria (pericardial changes and systolic left ventricular myocardial dysfunction) [20]. A prerequisite for the diagnosis of myocarditis is the presence of at least one main criterion from the T2 and the T1 group. These also explicitly include findings derived from mapping sequences. As explained, the latter requires the existence of locally-established reference values for the particular scanner and sequence type [22].

2. Localization according to 17-segment model for left ventricle and indication of the distribution pattern (subendocardial, intramyocardial, subepicardial, transmural). Circular vs. indication of localization. In addition, indication of hemodynamic relevance according to [20]. In addition, indication of max. pericardial thickness according to [20]. Statement regarding distribution pattern of pathological values. Myocardial: diffuse vs. localized (localization according to 17-segment model, subendocardial, intramyocardial, subepicardial, transmural); Pericardial: circular vs. indication of localization [20]. Possible: presence of a T2 (T2-weighted imaging/T2 mapping) or a T1 (LGE/T1 mapping/ECV) diagnostic criterion; yes: presence of at least one T2 and at least one T1 diagnostic criterion [20]. Free text for secondary findings. If needed, also recommendations for follow-up, see also the white paper on cardiac MRI in myocarditis from 2009 [19].
Reporting template “Dilatative Cardiomyopathy – DCM”

Tissue properties:
Late gadolinium enhancement (LGE) myocardium: no / yes ___________

Optional:
T2 mapping [ms]: ___________ (…) #
T2 mapping native [ms]: ___________ (…) #
T2 mapping post CM [ms]: ___________ (…) #
ECV [%]: ___________ (…) #

(with provision of sequence names in “Technique” section as well as #reference values from own pool)

Additional findings
No / yes _____

Conclusion:
MRI findings consistent with DCM: no / possible / yes 2
__________________ 3

1 Localization according to 17-segment model and indication of the distribution pattern; a striped late enhancement in the center of the myocardium is indicative of a less favorable prognosis of DCM [29]. 2 Possible: dilatation or functional impairment; yes: dilatation and functional impairment. 3 Free text, e. g. for secondary findings, presumed etiology vs. idiopathic.
Hypertrophic (Obstructive) Cardiomyopathy – H(O)CM

Max. LV wall thickness [mm]: ______, Localization ______
LVOT obstruction at rest: no / yes
LVOT obstruction during Valsalva: no / yes
SAM phenomenon of mitral valve: no / yes
Associated eccentric mitral valve insufficiency: no / yes

Tissue properties:
Late gadolinium enhancement (LGE) myocardium: no / yes _____________

Optional:
T2 mapping [ms]: ____________ (...)#
T2 mapping native [ms]: ____________ (...)#
T2 mapping post CM [ms]: ____________ (...)#
ECV [%]: ____________ (...)#

(with provision of sequence names in “Technique” section as well as
reference values from own pool)

Additional findings
No / yes _______________

Conclusion:
MRI findings consistent with HCM: no / possible / yes _______________ 7
Obstruction: no / yes ____________________ 8

1 Measured in end-diastole. 2 Localization according to 17-segment model [26]. 3 Visual detection of flow turbulence with signal drop due to dephasing in balanced Steady State Free Precession – bSSFP cine sequences. 4 If needed, using real time images or phase-contrast flow measurement [13]. A Valsava maneuver can provoke LVOT obstruction and is regularly used in the course of echocardiogram examinations of HCM patients with suspected LVOT obstruction [30]. 5 Localization according to 17-segment model and indication of the distribution pattern; typical for H(O)CM is a somewhat faint intramyocardial basal anteroseptal and inferoseptal delayed enhancement as expression of fibrosis [31]. 6 Regarding diagnosis definition, see e.g. Journal of Cardiovascular Magnetic Resonance 2012, 14: 17 [32]. 7 For a description of involved wall segments and resulting morphological changes, see also Noureldin et al. Journal of Cardiovascular Magnetic Resonance 2012, 14:17 [32]. 8 Free text for secondary findings.
Reporting template “ARRHYTHMGENIC RIGHT VENTRICULAR CARDIOMYOPATHY/ DYSPLASIA – ARVC/D”

(Micro) aneurysms RV wall: no / yes

Right ventricular wall thinning: no / yes

Dysynchronous RV contraction: no / yes

Optional: RVOT4 width in 3-chamber view*: _____ mm/m² (normal: xx mm/m²).

Tissue properties:

Late gadolinium enhancement (LGE) myocardium: no / yes

Evidence of fat signal in myocardium: no / yes

Assessment according to Task Force criteria (revised 2010)#,4

Major criterion: no / yes

Minor criterion: no / yes

Additional findings

No / yes

Conclusion:

MRI indicative of ARVC: no / yes

1 Localization. Typical locations are the “triangle of dysplasia”: RV wall adjacent to the RV inflow and outflow path and the apex of the heart [18] or the basal anterior and inferior RV wall as well as the posterolateral LV wall [27].

2 Localization according to 17-segment model [26] or inclusion of the RV analogously to the 5-segment model [27] and indication of the distribution pattern (subendocardial/intramycardial/subepicardial/transmural).

3 Localization: Typical features are focal, myocardial fatty degeneration or an "infiltrative", finger-shaped fatty degeneration of the free RV wall progressing from the epicardium with myocardial wall thinning potentially associated with late gadolinium enhancement [34]; MR tomographic fat detection or late gadolinium enhancement are not part of the Task Force criteria [18].

4 Only one major or minor criterion can be derived from MR imaging alone [18]. The definitive diagnosis of ARVD requires the presence of at least 2 major criteria, 1 major criterion plus 2 minor criteria or 4 minor criteria from 6 different diagnostic categories; a definitive diagnosis cannot be made based solely on MR diagnostics. A “borderline” ARVD is based on evidence of one major plus one minor criterion or 3 minor criteria. A ”possible” ARVD is based on evidence of one major criterion or two minor criteria. The MR criteria are defined as follows: Major criterion: Regional RV akinesia or dyskinesia or dysynchronous RV contraction and presence of one of the following findings: Ratio of RV EDV to BSA ≥ 110 mL/m² (male) or ≥ 100 mL/m² (female) or RV ejection fraction ≤ 40 %.

5 Indication of presence of task force and non-task force criteria (ARVD-typical pattern of fat infiltration and/or non-ischemic LGE) [34]. Free text for secondary findings.

The name of the co-author Daniel Pinto dos Santos was completed on 6.11.2019.
“Siderosis” reporting template

Quantitative tissue properties of the heart:

\[T2^* \text{ mapping (septum) [ms]}: \] __________ (normal > 20 ms)

Optional:

\[T2 \text{ mapping native (septum) [ms]}: \] __________ (…)\#
\[T1 \text{ mapping native (septum) [ms]}: \] __________ (…)\#

(with provision of sequence names in “Technique” section as well as reference values from own pool)

Morphology of liver / upper abdomen:

Liver parenchyma: unremarkable / ________
Liver artery, veins, portal vein: unremarkable / ________
Bile ducts / gall bladder: unremarkable / ________
Spleen: unremarkable / ________

Lymph nodes: No suspicious lymph nodes / lymph node ________\#\#, approx. _mm.
Ascites: none / few / moderate / pronounced

Quantitative tissue properties of liver:

\[T2^* \text{ mapping [ms]}: \] __________ (normal > 24 ms)

Optional:

\[T2 \text{ mapping native [ms]}: \] __________ (…)\#
\[T1 \text{ mapping native [ms]}: \] __________ (…)\#

(with provision of sequence names in “Technique” section as well as reference values from own pool)

Fat fraction: ____

Additional findings

No / yes _______________

Conclusion:

Heart:

Based on 1.5 Tesla MRI signs of mild (T2* = 15–20 ms) / moderate (T2* = 10-14 ms) / severe (T2*< 10ms) cardiac iron overload / no evidence of cardiac iron overload (T2*> 20 ms).

Unremarkable function of right and left ventricle / limited / moderate / severely limited LV/RV systolic function (EF _%).

Liver:

Based on 1.5 Tesla MRI unremarkable (T2*> 24 ms) / low (T2* < 24 ms) / moderate (T2* < 21 ms) / pronounced (T2*< 14 ms) iron accumulation.

Secondary signs of mild / pronounced cirrhosis of the liver.

1 If noticeable, description of pathology as free text. 2 Graduation analogous to [22], according to these recommendations assessment for potential iron overload by means of T2* mapping should be performed at 1.5 Tesla only. 3 Graduation analogous to [35]. 4 Free text for secondary findings.
Conflict of Interest

The authors declare that they have no conflict of interest.

References

[27] Deutsche Röntgengesellschaft e. V. Nutzungslizenz Befundvorlagen der DRG [Internet]. Verfügbar unter: https://www.befundung.drg.de/de-DE/3478/creative-commons-licenz-cc-by-nc-nd/

