Z Orthop Unfall 2021; 159(01): 83-90
DOI: 10.1055/a-1017-3968
Review/Übersicht

Implants for Vertebral Body Replacement – Which Systems are Available and Have Become Established

Article in several languages: English | deutsch
Adnan Kasapovic
1   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn
,
Rahel Bornemann
1   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn
,
Robert Pflugmacher
1   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn
,
Yorck Rommelspacher
2   Orthopaedics and Spinal Surgery, Augustinerinnen Hospital, Cologne
› Author Affiliations

Abstract

Since the first vertebral body replacement operations over 50 years ago until now, there were developed numerous methods and implants. Vertebral body replacement after corpectomy nowadays is a standard procedure in spinal surgery. At the beginning mainly bone grafts were used. Due to continuous development, PMMA and titanium implants were developed. Nowadays various expandable and non-expandable implants are available. Numerous implants can still be justified. The question arises which methods and systems are on the market and which ones have proven themselves? This article describes and compares the advantages and disadvantages of each implant type.



Publication History

Article published online:
31 October 2019

© 2019. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Whitesides jr. TE. Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res 1977; (128) 78-92
  • 2 Oda I, Cunningham BW, Abumi K. et al. The stability of reconstruction methods after thoracolumbar total spondylectomy. An in vitro investigation. Spine (Phila Pa 1976) 1999; 24: 1634-1638
  • 3 Stoltze D, Harms J. Korrekturen posttraumatischer Fehlstellungen. Prinzipien und Techniken. Orthopäde 1999; 28: 731-745
  • 4 Oprel PP, Tuinebreijer WE, Patka P. et al. Combined anterior-posterior surgery versus posterior surgery for thoracolumbar burst fractures: a systematic review of the literature. Open Orthop J 2010; 4: 93-100 doi:10.2174/1874325001004010093
  • 5 Korovessis P, Baikousis A, Zacharatos S. et al. Combined anterior plus posterior stabilization versus posterior short-segment instrumentation and fusion for mid-lumbar (L2–L4) burst fractures. Spine (Phila Pa 1976) 2006; 31: 859-868 doi:10.1097/01.brs.0000209251.65417.16
  • 6 Daniaux H, Seykora P, Genelin A. et al. Application of posterior plating and modifications in thoracolumbar spine injuries. Indication, techniques, and results. Spine (Phila Pa 1976) 1991; 16 (3 Suppl.): S125-S133
  • 7 Knop C, Blauth M, Bühren V. et al. Operative Behandlung von Verletzungen des thorakolumbalen Übergangs – Teil 3: Nachuntersuchung. Ergebnisse einer prospektiven multizentrischen Studie der Arbeitsgemeinschaft „Wirbelsäule“ der Deutschen Gesellschaft für Unfallchirurgie. Unfallchirurg 2001; 104: 583-600
  • 8 Shono Y, McAfee PC, Cunningham BW. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine (Phila Pa 1976) 1994; 19: 1711-1722
  • 9 Holz F, Matschke S, Wentzensen A. Operative Behandlung von Wirbelfrakturen – ventrale Instrumentierung. OP-Journal 2001; 17: 162-171 doi:10.1055/s-2007-977550
  • 10 Tarhan T, Froemel D, Rickert M. et al. Geschichte des Wirbelkörperersatzes. Unfallchirurg 2015; 118 (Suppl. 01) S73-S79 doi:10.1007/s00113-015-0084-x
  • 11 Kirschner M, Guleke N, Kleinschmidt O. Die Freilegung der Wirbelkörper. In: Kirschner M, Guleke N, Kleinschmidt O. Hrsg. Allgemeine und Spezielle chirurgische Operationslehre. Berlin, Heidelberg: Springer; 1935: 943-954
  • 12 Chaklin VD. [On surgery of the spine]. Ortop Travmatol Protez 1960; 21: 3-13
  • 13 Hodgson AR, Stock FE. Anterior spinal fusion a preliminary communication on the radical treatment of Pottʼs disease and Pottʼs paraplegia. Br J Surg 1956; 44: 266-275 doi:10.1002/bjs.18004418508
  • 14 Thomas AP, Thompson AG. Vertebral body replacement by free fibula strut graft. J R Coll Surg Edinb 1987; 32: 298-302
  • 15 Griss P, Pfeiffer M. Vertebral body replacement with homologous femoral head transplants. Int Orthop 1991; 15: 65-69 doi:10.1007/BF00210538
  • 16 Roy-Camille R, Saillant G, Mazel C. et al. Utilisation des têtes fémorales de banque dans les reconstructions après corporectomies dorsales et lombaires. 15 cas avec un recul de 9 à 30 mois. Rev Chir Orthop Reparatrice Appar Mot 1987; 73 (Suppl. 02) S168-S170
  • 17 Vieweg U, Kaden B, Schramm J. Wirbelkörperersatz mit einem Rippensegmentblock beim transthorakalen Eingriff. Zentralbl Neurochir 1996; 57: 136-142
  • 18 Munting E, Faundez A, Manche E. Vertebral reconstruction with cortical allograft: long-term evaluation. Eur Spine J 2001; 10 (Suppl. 02) S153-S157 doi:10.1007/s005860100272
  • 19 Silber JS, Anderson DG, Daffner SD. et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 2003; 28: 134-139 doi:10.1097/01.BRS.0000041587.55176.67
  • 20 Sasso RC, LeHuec JC, Shaffrey C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech 2005; 18 (Suppl.) S77-S81
  • 21 Ahlmann E, Patzakis M, Roidis N. et al. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 2002; 84: 716-720
  • 22 Lu DC, Wang V, Chou D. The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery 2009; 64: 122-129 doi:10.1227/01.NEU.0000336332.11957.0B
  • 23 Kaden B, Koch W, Varchmin-Schultheiss K. et al. Biomechanical studies of transthoracic vertebral body replacement with autologous bone grafts (fibula and rib). Neurosurg Rev 1996; 19: 17-21
  • 24 Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976) 1995; 20: 1055-1060
  • 25 Goulet JA, Senunas LE, DeSilva GL. et al. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 1997; (339) 76-81
  • 26 Kurz LT, Garfin SR, Booth RE. Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine (Phila Pa 1976) 1989; 14: 1324-1331
  • 27 Bouchard JA, Koka A, Bensusan JS. et al. Effects of irradiation on posterior spinal fusions. A rabbit model. Spine (Phila Pa 1976) 1994; 19: 1836-1841
  • 28 Kandziora F, Schollmeier G, Scholz M. et al. Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg 2002; 96 (3 Suppl.): S321-S332
  • 29 Briem D, Windolf J, Lehmann W. et al. Endoskopische Knochentransplantation an der Wirbelsäule Ergebnisse der anterioren Fusion und therapeutische Konsequenzen. Unfallchirurg 2004; 107: 1152-1161 doi:10.1007/s00113-004-0822-y
  • 30 Briem D, Rueger JM, Linhart W. Einheilung autogener Transplantate nach dorsoventraler Instrumentierung instabiler Frakturen der thorakolumbalen Wirbelsäule. Unfallchirurg 2003; 106: 195-203 doi:10.1007/s00113-002-0508-2
  • 31 Pizanis A, Holstein JH, Vossen F. et al. Compression and contact area of anterior strut grafts in spinal instrumentation: a biomechanical study. BMC Musculoskelet Disord 2013; 14: 254 doi:10.1186/1471-2474-14-254
  • 32 Tahal D, Madhavan K, Chieng LO. et al. Metals in Spine. World Neurosurg 2017; 100: 619-627 doi:10.1016/j.wneu.2016.12.105
  • 33 Levine BR, Sporer S, Poggie RA. et al. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006; 27: 4671-4681 doi:10.1016/j.biomaterials.2006.04.041
  • 34 Levi AD, Choi WG, Keller PJ. et al. The radiographic and imaging characteristics of porous tantalum implants within the human cervical spine. Spine (Phila Pa 1976) 1998; 23: 1245-1250
  • 35 Black J. Biological performance of tantalum. Clin Mater 1994; 16: 167-173
  • 36 Wang JC, Boland P, Mitra N. et al. Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004 J Neurosurg Spine 2004; 1: 287-298 doi:10.3171/spi.2004.1.3.0287
  • 37 Salzer M, Bösch P, Hackel H. Die totale Wirbelkörperresektion. Arch Orthop Unfallchir 1977; 90: 147-156 doi:10.1007/BF00414988
  • 38 Salzer M, Salzer G, Denck H. et al. Operative Behandlung „solitärer“ Metastasen der Brust- und Lendenwirbelkörper. Arch Orthop Unfallchir 1973; 75: 249-254 doi:10.1007/BF00416615
  • 39 Arcq M. Palliativoperationen zur Behandlung von Knochenmetastasen. Z Orthop Ihre Grenzgeb 1975; 113: 51-58
  • 40 Polster J, Brinckmann P. Ein Wirbelkörperimplantat zur Verwendung bei Palliativoperationen an der Wirbelsäule. Z Orthop Ihre Grenzgeb 1977; 115: 118-122
  • 41 Polster J, Wuisman P, Härle A. et al. Die ventrale Stabilisierung von primären Tumoren und Metastasen der Wirbelsäule mit dem Wirbelkörperimplantat und Palacos. Z Orthop Ihre Grenzgeb 1989; 127: 414-417 doi:10.1055/s-2008-1044690
  • 42 Harrington KD. The use of methylmethacrylate for vertebral-body replacement and anterior stabilization of pathological fracture-dislocations of the spine due to metastatic malignant disease. J Bone Joint Surg Am 1981; 63: 36-46
  • 43 Onimus M, Bertin D. Stabilisation chirurgicale des fractures métastatiques du rachis. Rev Chir Orthop Reparatrice Appar Mot 1982; 68: 369-378
  • 44 Toksvig-Larsen S, Johnsson R, Strömqvist B. Heat generation and heat protection in methylmethacrylate cementation of vertebral bodies. A cadaver study evaluating different clinical possibilities of dural protection from heat during cement curing. Eur Spine J 1995; 4: 15-17 doi:10.1007/BF00298412
  • 45 Krishnan EC, Nelson C, Neff JR. Thermodynamic considerations of acrylic cement implant at the site of giant cell tumors of the bone. Med Phys 1986; 13: 233-239 doi:10.1118/1.595902
  • 46 Uchiyama S, Yashiro K, Takahashi H. et al. An experimental study of spinal cord evoked potentials and histologic changes following spinal cord heating. Spine (Phila Pa 1976) 1989; 14: 1215-1219
  • 47 McAfee PC, Bohlman HH, Ducker T. et al. Failure of stabilization of the spine with methylmethacrylate. A retrospective analysis of twenty-four cases. J Bone Joint Surg Am 1986; 68: 1145-1157
  • 48 Akamaru T, Kawahara N, Sakamoto J. et al. The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis. Spine (Phila Pa 1976) 2005; 30: 2783-2787
  • 49 Kanayama M, Cunningham BW, Haggerty CJ. et al. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg 2000; 93 (2 Suppl.): S259-S265
  • 50 Kandziora F, Schnake KJ, Klostermann CK. et al. Wirbelkörperersatz in der Wirbelsäulenchirurgie. Unfallchirurg 2004; 107: 354-371 doi:10.1007/s00113-004-0777-z
  • 51 Reinhold M, Schmoelz W, Canto F. et al. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 2009; 129: 1375-1382 doi:10.1007/s00402-009-0823-y
  • 52 Lange U, Edeling S, Knop C. et al. Wirbelkörperersatz mit höhenvariablem Titanimplantat. Ergebnisse einer prospektiven klinischen Studie. Unfallchirurg 2006; 109: 733-742 doi:10.1007/s00113-006-1090-9
  • 53 Penzkofer R, Hofberger S, Spiegl U. et al. Biomechanical comparison of the end plate design of three vertebral body replacement systems. Arch Orthop Trauma Surg 2011; 131: 1253-1259 doi:10.1007/s00402-011-1284-7
  • 54 Gonschorek O, Spiegl U, Weiss T. et al. Rekonstruktion der ventralen Säule nach thorakolumbalen Wirbelsäulenverletzungen. Unfallchirurg 2011; 114: 26-34 doi:10.1007/s00113-010-1940-3
  • 55 Sasani M, Ozer AF. Single-stage posterior corpectomy and expandable cage placement for treatment of thoracic or lumbar burst fractures. Spine (Phila Pa 1976) 2009; 34: E33-E40 doi:10.1097/BRS.0b013e318189fcfd
  • 56 Morales Alba NA. Posterior placement of an expandable cage for lumbar vertebral body replacement in oncologic surgery by posterior simple approach: technical note. Spine (Phila Pa 1976) 2008; 33: E901-E905 doi:10.1097/BRS.0b013e31818b8a06
  • 57 Shen FH, Marks I, Shaffrey C. et al. The use of an expandable cage for corpectomy reconstruction of vertebral body tumors through a posterior extracavitary approach: a multicenter consecutive case series of prospectively followed patients. Spine J 2008; 8: 329-339 doi:10.1016/j.spinee.2007.05.002
  • 58 Chou D, Lu DC, Weinstein P. et al. Adjacent-level vertebral body fractures after expandable cage reconstruction. J Neurosurg Spine 2008; 8: 584-588 doi:10.3171/SPI/2008/8/6/584
  • 59 Robinson Y, Tschoeke SK, Kayser R. et al. Reconstruction of large defects in vertebral osteomyelitis with expandable titanium cages. Int Orthop 2009; 33: 745-749 doi:10.1007/s00264-008-0567-2
  • 60 Pekmezci M, Tang JA, Cheng L. et al. Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model, part I: endplate force characteristics. J Neurosurg Spine 2012; 17: 321-326 doi:10.3171/2012.7.SPINE12171
  • 61 Ernstberger T, Kögel M, König F. et al. Expandable vertebral body replacement in patients with thoracolumbar spine tumors. Arch Orthop Trauma Surg 2005; 125: 660-669 doi:10.1007/s00402-005-0057-6
  • 62 Hunt T, Shen FH, Arlet V. Expandable cage placement via a posterolateral approach in lumbar spine reconstructions. Technical note. J Neurosurg Spine 2006; 5: 271-274 doi:10.3171/spi.2006.5.3.271
  • 63 Keshavarzi S, Newman CB, Ciacci JD. et al. Expandable titanium cages for thoracolumbar vertebral body replacement: initial clinical experience and review of the literature. Am J Orthop 2011; 40: E35-E39
  • 64 Knop C, Kranabetter T, Reinhold M. et al. Combined posterior-anterior stabilisation of thoracolumbar injuries utilising a vertebral body replacing implant. Eur Spine J 2009; 18: 949-963 doi:10.1007/s00586-009-0970-4
  • 65 Viswanathan A, Abd-El-Barr MM, Doppenberg E. et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J 2012; 21: 84-92 doi:10.1007/s00586-011-1882-7
  • 66 Yeung KWK, Poon RWY, Chu PK. et al. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A 2007; 82: 403-414 doi:10.1002/jbm.a.31154
  • 67 Arens S, Schlegel U, Printzen G. et al. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 1996; 78: 647-651 doi:10.1302/0301-620X.78B4.0780647
  • 68 Gracia E, Fernández A, Conchello P. et al. Adherence of Staphylococcus aureus slime-producing strain variants to biomaterials used in orthopaedic surgery. Int Orthop 1997; 21: 46-51 doi:10.1007/s002640050116
  • 69 Yang X, Song Y, Liu L. et al. Anterior reconstruction with nano-hydroxyapatite/polyamide-66 cage after thoracic and lumbar corpectomy. Orthopedics 2012; 35: e66-e73 doi:10.3928/01477447-20111122-10
  • 70 Papanastassiou ID, Gerochristou M, Aghayev K. et al. Defining the indications, types and biomaterials of corpectomy cages in the thoracolumbar spine. Expert Rev Med Devices 2013; 10: 269-279 doi:10.1586/erd.12.79
  • 71 Eck JC. Minimally invasive corpectomy and posterior stabilization for lumbar burst fracture. Spine J 2011; 11: 904-908 doi:10.1016/j.spinee.2011.06.013
  • 72 Ruf M, Stoltze D, Merk HR. et al. Treatment of vertebral osteomyelitis by radical debridement and stabilization using titanium mesh cages. Spine (Phila Pa 1976) 2007; 32: E275-E280 doi:10.1097/01.brs.0000261034.83395.7f
  • 73 Liljenqvist U, Lerner T, Bullmann V. et al. Titanium cages in the surgical treatment of severe vertebral osteomyelitis. Eur Spine J 2003; 12: 606-612 doi:10.1007/s00586-003-0614-z
  • 74 Kuklo TR, Potter BK, Bell RS. et al. Single-stage treatment of pyogenic spinal infection with titanium mesh cages. J Spinal Disord Tech 2006; 19: 376-382 doi:10.1097/01.bsd.0000203945.03922.f6
  • 75 Korovessis P, Repantis T, Iliopoulos P. et al. Beneficial influence of titanium mesh cage on infection healing and spinal reconstruction in hematogenous septic spondylitis: a retrospective analysis of surgical outcome of twenty-five consecutive cases and review of literature. Spine (Phila Pa 1976) 2008; 33: E759-E767 doi:10.1097/BRS.0b013e318187875e
  • 76 Grob D, Daehn S, Mannion AF. Titanium mesh cages (TMC) in spine surgery. Eur Spine J 2005; 14: 211-221 doi:10.1007/s00586-004-0748-7
  • 77 Eck KR, Bridwell KH, Ungacta FF. et al. Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine (Phila Pa 1976) 2000; 25: 2407-2415
  • 78 Dvorak MF, Kwon BK, Fisher CG. et al. Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection. Spine (Phila Pa 1976) 2003; 28: 902-908 doi:10.1097/01.BRS.0000058712.88053.13
  • 79 Eleraky M, Papanastassiou I, Tran ND. et al. Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur Spine J 2011; 20: 1363-1370 doi:10.1007/s00586-011-1738-1
  • 80 Eleraky MA, Duong HT, Esp E. et al. Expandable versus nonexpandable cages for thoracolumbar burst fracture. World Neurosurg 2011; 75: 149-154 doi:10.1016/j.wneu.2010.09.018
  • 81 Pflugmacher R, Schleicher P, Schaefer J. et al. Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine. Spine (Phila Pa 1976) 2004; 29: 1413-1419
  • 82 Khodadadyan-Klostermann C, Schaefer J, Schleicher P. et al. Expandierbare Cages als Wirbelkörperersatz. Biomechanischer Vergleich verschiedener Cages für die ventrale Spondylodese im thorakolumbalen Übergang der Wirbelsäule. Chirurg 2004; 75: 694-701 doi:10.1007/s00104-003-0786-4