Z Orthop Unfall 2021; 159(01): 54-66
DOI: 10.1055/a-1019-8117
Original Article

Protein-Degrading Enzymes in Osteoarthritis

Proteolytische Enzyme in der Osteoarthritis
Peidong Pu
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Ma Qingyuan
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Wang Weishan
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Han Fei
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Ma Tengyang
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Zhou Weiping
2   Xinjiang Military Region 69337 Unit Health Center, China
,
Zhu Zhoujun
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Wang Mengyu
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Wang Chao
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
,
Shi Chong
1   Department of Orthopaedics, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
› Author Affiliations

Abstract

Objective TGFβ1 plays an important role in the metabolism of articular cartilage and bone; however, the pathological mechanism and targets of TGFβ1 in cartilage degradation and uncoupling of subchondral bone remodeling remain unclear. Therefore, in this study, we investigated the relationship between TGFβ1 and major protein-degrading enzymes, and evaluated the role of high levels of active TGFβ1 in the thickening of subchondral bone and calcification of articular cartilage.

Materials and Methods The expression of TGFβ1 and protein-degrading enzymes in clinical samples of articular cartilage and subchondral bone obtained from the knee joint of patients with osteoarthritis was detected by immunohistochemistry. The expression levels of TGFβ1, MMP-3, MMP-13 and IL-1β in cartilage and subchondral bone tissues were detected by absolute real-time quantitative RT-PCR. The expression of TGFβ1, nestin and osterix in subchondral bone was detected by Western blot analysis and immunohistochemistry. The degree of subchondral bone thickening was determined by micro-computed tomography (CT) imaging.

Results Expression of TGFβ1 and cartilage-degrading enzymes was higher in the cartilage-disrupted group than that in the intact group. Furthermore, expression of TGFβ1, nestin and osterix was significantly higher in the OA group than that in the control group. Micro-CT imaging showed that in the OA group, the subchondral bone plate is thickened and the density is increased. The trabecular bone structure is thick plate-like structure, the thickness of the trabecular bone is increased and the gap is small.

Conclusions The data suggest that highly active TGFβ1 activates the expression of cartilage-degrading enzymes. Abnormally activated TGFβ1 may induce formation of the subchondral bone and expansion of the calcified cartilage area, eventually leading to degradation of the cartilage tissue.

Zusammenfassung

Ziel TGFβ1 spielt eine wichtige Rolle im Stoffwechsel von Gelenkknorpel und Knochen; jedoch bleiben der pathologische Mechanismus und die Ziele von TGFβ1 beim Knorpelabbau und Entkopplung des subchondralen Knochenumbaus unklar. Daher untersuchten wir in dieser Studie die Beziehung zwischen TGFβ1 und wichtigen proteinabbauenden Enzymen und der Rolle hoher Konzentrationen an aktivem TGFβ1 bei der Verdickung des subchondralen Knochens und Verkalkung des Gelenkknorpels.

Materialien und Methoden Die Expression von TGFβ1 und der Abbau von Enzymen in klinischen Proben von Gelenkknorpel und subchondralen Knochen aus dem Kniegelenk von Patienten mit Arthrose wurden immunhistochemisch nachgewiesen. Die Expressionsniveaus von TGFβ1, MMP-3, MMP-13 und IL-1β in Knorpel- und subchondralen Knochengeweben wurden durch absolute quantitative RT-PCR in Echtzeit nachgewiesen. Die Expression von TGFβ1, Nestin und Osterix im subchondralen Knochen wurde durch Western-Blot-Analyse und Immunhistochemie nachgewiesen. Der Grad der subchondralen Knochenverdickung wurde durch Mikrocomputertomografie (CT) bestimmt.

Ergebnisse Die Expression von TGFβ1 und knorpelabbauenden Enzymen war in der Gruppe mit Knorpelstörungen höher als in der intakten Gruppe. Weiterhin war die Expression von TGFβ1, Nestin und Osterix in der OA-Gruppe signifikant höher als in der Kontrollgruppe. Die Mikro-CT-Bildgebung zeigte, dass in der OA-Gruppe die subchondrale Knochenplatte verdickt und die Dichte erhöht ist. Die trabekuläre Knochenstruktur ist dick plättchenförmig, die Dicke des Trabekelknochens erhöht und die Lücke ist klein.

Schlussfolgerungen Die Daten legen nahe, dass hochaktives TGFβ1 die Expression von knorpelabbauenden Enzymen aktiviert. Ungewöhnlich aktiviertem TGFβ1 kann die Bildung des subchondralen Knochens und Ausdehnung des verkalkten Knorpelbereichs induzieren, was zu einem Abbau des Knorpelgewebes führt.



Publication History

Article published online:
19 November 2019

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med 2005; 24: 1-12
  • 2 OʼNeill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol 2018; 32: 312-326
  • 3 Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Rheum Dis Clin North Am 2008; 34: 515-529
  • 4 Pereira D, Peleteiro B, Araãºjo J. et al. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthritis Cartilage 2011; 19: 1270-1285
  • 5 Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol 2011; 23: 492-496
  • 6 Tchetina EV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis 2010; 2011: 683970
  • 7 Dreier R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther 2010; 12: 1-11
  • 8 Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 2011; 7: 43
  • 9 Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18: 419-433
  • 10 van der Kraan PM, Marie-José G, Esmeralda BD. et al. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2012; 347: 257-265
  • 11 Blaney Davidson EN, Remst DF, Vitters EL. et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 2009; 182: 7937-7945
  • 12 van Caam A, Madej W, Garcia de Vinuesa A. et al. TGFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity. Arthritis Res Ther 2017; 19: 112
  • 13 Chavez RD, Coricor G, Perez J. et al. SOX9 protein is stabilized by TGF-β and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthritis Cartilage 2017; 25: 332-340
  • 14 Fang J, Xu L, Li Y. et al. Roles of TGF-beta 1 signaling in the development of osteoarthritis. Histol Histopathol 2016; 31: 1161-1167
  • 15 Valdes AM, Spector TD, Tamm A. et al. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum 2014; 62: 2347-2352
  • 16 Bianco P, Cao X, Frenette PS. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 2013; 19: 35-42
  • 17 Méndez-Ferrer S, Michurina TV, Ferraro F. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829-834
  • 18 Nakashima K, Zhou X, Kunkel G. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108: 17-29
  • 19 Zhen G, Wen C, Jia X. et al. Inhibition of TGF-[beta] signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 2016; 19: 704-712
  • 20 Sharkey PF, Cohen SB, Leinberry CF. et al. Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop (Belle Mead NJ) 2012; 41: 413-417
  • 21 Henrotin Y, Pesesse L, Sanchez C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 2012; 23: 847-851
  • 22 Cui Z, Crane J, Xie H. et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis 2016; 75: 1714-1721
  • 23 Keyak JH. Relationships between femoral fracture loads for two load configurations. J Biomech 2000; 33: 499-502
  • 24 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16: 494-502 doi:10.1136/ard.16.4.494
  • 25 Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986; 213: 34-40
  • 26 van der Kraan PM, Goumans MJ, Blaney Davidson E. et al. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2012; 347: 257-265
  • 27 Blaney Davidson EN, Remst DF, Vitters EL. et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 2009; 182: 7937-7945
  • 28 Shen J, Li S, Chen D. TGF-β signaling and the development of osteoarthritis. Bone Res 2014; 2: 73-79
  • 29 Crane JL, Xu C. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 2014; 124: 466-472
  • 30 Yuan XL, Meng HY, Wang YC. et al. Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22: 1077-1089
  • 31 Zhen G, Wen C, Jia X. et al. Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis. Nat Med 2013; 19: 704-712
  • 32 Wang W, Li C, Pang L. et al. Mesenchymal stem cells recruited by active TGFβ contribute to osteogenic vascular calcification. Stem Cells Dev 2014; 23: 1392-1404
  • 33 Shen J, Li J, Wang B. et al. Deletion of the Transforming Growth Factor β Receptor Type II Gene in Articular Chondrocytes Leads to a Progressive Osteoarthritis‐like Phenotype in Mice. Arthritis Rheum 2013; 65: 3107-3119
  • 34 Gueders MM, Foidart JM, Noel A. et al. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: Potential implications in asthma and other lung diseases. Eur J Pharmacol 2006; 533: 133-144
  • 35 Pengas I, Eldridge S, Assiotis A. et al. MMP-3 in the peripheral serum as a biomarker of knee osteoarthritis, 40 years after open total knee meniscectomy. J Exp Orthop 2018; 5: 21
  • 36 Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci 2006; 11: 529-543
  • 37 Pengcui L, Jin D, Xiaochun W. et al. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13. Mol Med Rep 2016; 14: 1475-1482
  • 38 Wang M, Sampson ER, Jin H. et al. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther 2013; 15: R5 doi:10.1186/ar4133
  • 39 Lim NH, Meinjohanns E, Meldal M. et al. In vivo imaging of MMP-13 activity in the murine destabilised medial meniscus surgical model of osteoarthritis. Osteoarthritis Cartilage 2014; 22: 862-868
  • 40 Li H, Wang D, Yuan Y. et al. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther 2017; 19: 248
  • 41 Tomoo S, Koji K, Satoshi Y. et al. Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum 2010; 54: 808-817
  • 42 Chen YT, Hou CH, Hou SM. et al. The Effects of Amphiregulin Induced MMP-13 Production in Human Osteoarthritis Synovial Fibroblast. Mediators Inflamm 2014; 2014: 759028
  • 43 Huang X, Pan Q, Mao Z. et al. Kaempferol inhibits interleukin-1β stimulated matrix metalloproteinases by suppressing the MAPK-associated ERK and P38 signaling pathways. Mol Med Rep 2018; 18: 2697-2704 doi:10.3892/mmr.2018.9280
  • 44 Fan Z, Söder S, Oehler S. et al. Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage. Am J Pathol 2007; 171: 938-946
  • 45 Martin TJ. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiol Rev 2016; 96: 831-871 doi:10.1152/physrev.00031.2015
  • 46 Li C, Wang W, Xie L. et al. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann N Y Acad Sci 2016; 1364: 62-73
  • 47 Li Z, Kong K, Qi W. Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochem Biophys Res Commun 2006; 343: 345-350
  • 48 Pan A, Chang L, Nguyen A. et al. A review of hedgehog signaling in cranial bone development. Front Physiol 2013; 4: 61
  • 49 Jingming Z, Qian C, Beate L. et al. Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice. Arthritis Res Ther 2014; 16: R11
  • 50 Shin K, Lim A, Zhao C. et al. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 2014; 26: 521-533
  • 51 Kugler MC, Joyner AL, Loomis CA. et al. Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 2015; 52: 1-13
  • 52 Xu X, Lu Y, Li Y. et al. Sonic Hedgehog Signaling in Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8: 284
  • 53 Yasuhara R, Yuasa T, Williams JA. et al. Wnt/beta-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem 2010; 285: 317-327
  • 54 Yuasa T, Otani T, Koike T. et al. Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 2008; 88: 264-274
  • 55 Zhu M, Tang D, Wu Q. et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 2009; 24: 12-21
  • 56 Shen J, Li J, Wang B. et al. Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum 2013; 65: 3107-3119
  • 57 Blaney Davidson EN, Remst DF, Vitters EL. et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 2009; 182: 7937-7945
  • 58 van der Kraan PM, Goumans MJ, Blaney Davidson E. et al. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2012; 347: 257-265
  • 59 Zaidi M. Skeletal remodeling in health and disease. Nat Med 2007; 13: 791-801
  • 60 Mundy GR, Florent E. Boning up on ephrin signaling. Cell 2006; 126: 441-443
  • 61 Hadjidakis DJ, Androulakis II. Bone Remodeling. Ann N Y Acad Sci 2006; 1092: 385-396
  • 62 Crane JL, Xian L, Cao X. Role of TGF-β Signaling in Coupling Bone Remodeling. Methods Mol Biol 2016; 1344: 287
  • 63 Tang Y, Wu XW. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009; 15: 757-765