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ABSTRACT

Alzheimerʼs disease is a neurodegenerative disease that leads

to irreversible neuronal damage. Senile plaques, composed of

amyloid beta peptide, is the principal abnormal characteristic

of the disease. Among the factors involved, the secretase en-

zymes, namely, α secretase, beta-site amyloid precursor pro-

tein-cleaving enzyme, β secretase, and γ secretase, hold con-

sequential importance. Beta-site amyloid precursor protein-

cleaving enzyme 1 is considered to be the rate-limiting factor

in the production of amyloid beta peptide. Research support-

ing the concept of inhibition of beta-site amyloid precursor

protein-cleaving enzyme activity as one of the effective ther-

apeutic targets in the mitigation of Alzheimerʼs disease is well

accepted. The identification of natural compounds, such as β-
amyloid precursor protein-selective beta-site amyloid precur-

sor protein-cleaving enzyme inhibitors, and the idea of com-

partmentalisation of the beta-site amyloid precursor protein-

cleaving enzyme 1 action have caused a dire need to closely

examine the natural compounds and their effectiveness in

the disease mitigation. Many natural compounds have been

reported to effectively modulate beta-site amyloid precursor

protein-cleaving enzyme 1. At lower doses, compounds like

2,2′,4′-trihydroxychalcone acid, quercetin, and myricetin

have been shown to effectively reduce beta-site amyloid pre-

cursor protein-cleaving enzyme 1 activity. The currently used

five drugs that are marketed and used for the management of

Alzheimerʼs disease have an increased risk of toxicity and

restricted therapeutic efficiency, hence, the search for new

anti-Alzheimerʼs disease drugs is of primary concern. A variety

of natural compounds having pure pharmacological moieties

showing multitargeting activity and others exhibiting specific

beta-site amyloid precursor protein-cleaving enzyme 1 inhibi-

tion as discussed below have superior biosafety. Many of

these compounds, which are isolated from medicinal herbs

and marine flora, have been long used for the treatment of

various ailments since ancient times in the Chinese and Ayur-

vedic medical systems. The aim of this article is to review the

available data on the selected natural compounds, giving em-

phasis to the inhibition of beta-site amyloid precursor protein-

cleaving enzyme 1 activity as a mode of Alzheimerʼs disease

treatment.

Natural Compounds with Anti-BACE1 Activity as Promising
Therapeutic Drugs for Treating Alzheimerʼs Disease

* These two authors contributed equally to this work.
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Introduction
Alzheimerʼs disease (AD) is a prevalent neurodegenerative prote-
opathy that is currently incurable [1]. Patients suffering from the
disease are characterised by reduced cognitive function, progres-
sive deterioration of the memory and neuronal damage, and
changes in mood and behaviour [2]. Living with this disease can
be debilitating and ultimately fatal. The presence of amyloid
plaques (composed mainly of Aβ peptides) and neurofibrillary tan-
gles (aggregates of hyperphosphorylated tau protein) is the main
pathological characteristic of AD [3]. This is accompanied by mi-
croglial proliferation, neuropil threads, and associated astrogliosis
[4]. These pathological processes lead to the deterioration of the
brain and its activities.

Sequential processing of the β-amyloid precursor protein
(βAPP) by β secretase and γ secretase leads to the formation of
the Aβ peptides [5]. The γ secretase cleaves C99 after the action
of beta-site amyloid precursor protein-cleaving enzyme 1
(BACE1), leading to the formation of Aβ40 and Aβ42 in most cases
[6]. β Secretase or BACE1 also known as memapsin 2, and Asp 2)
holds one of the pivotal roles in AD disease pathogenesis as its
protein levels and/or enzyme activity are observed to be signifi-
cantly elevated in the AD brain compared to the slight elevation
seen in the normal aging brain [7–9]. Hence, BACE1 is of specific
interest as a drug target since its inhibition is considered a poten-
tial treatment, if not the cure. Similar to BACE1, BACE2 is a type I
transmembrane protein and is a close homologue [10,11]. BACE2
has been reported to cleave βAPP like BACE1, but the fragments
produced have so far not been observed in senile plaques. Hence,
its role in AD is questionable [11]. BACE2 is expressed highly in the
peripheral tissues and in oligodendrocytes, astrocytes, and neu-
ronal subsets [12], whereas BACE1 is highly concentrated only in
the brain [10]. BACE1 is considered to be the rate-limiting factor
involved in the formation of Aβ, and as such is a suitable target for
drugs [13]. A detailed illustration of the βAPP processing by the
secretases is depicted in ▶ Fig. 1.

Inhibition of BACE1 activity can be an effective therapeutic tar-
get for treating AD. Complete BACE1 inhibition was considered to
be desirable after Roberds et al. and other independent studies re-
ported that BACE1 −/−mice failed to exhibit excessive Aβ deposi-
tion. Luo et al. also evidenced that BACE1 knockout fully prevents
Aβ production while displaying a normal phenotype in mice [14,
15]. This gave rise to the idea that therapeutic inhibition BACE1
in humans, similar to BACE1-null mice, may be free of mecha-
nism-based toxicity and thus an effective method in Alzheimerʼs
disease treatment. These analyses boosted the drug discoveries
targeting complete BACE1 inhibition andmany clinical trials which
resulted in mild cognitive impairment. This leads to a need for fur-
ther research and subsequent studies on complete BACE1 inhibi-
tion that found BACE1-null mice showed increased instances of
seizures, schizophrenia-like phenotypes, demyelination, axonal
misguidance, and high offspring mortality rates in contrast to
BACE1 ±mice (i.e., heterozygous mice with a genetically decreased
level of BACE1). BACE1 ±mice failed to exhibit any side effects and
phenotypic changes but showed potential Aβ reduction. Recent
studies have shown that the A673T mutation of APP impairs
cleavage by BACE1, resulting in protection against AD, thus fur-
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ther supporting BACE1 inhibition [16]. From the prior studies con-
ducted [14–16] and the critical role played in amyloidogenic pro-
cessing, BACE1 can thus be considered a probable target. Four
therapeutic agents approved by the FDA (donepezil, rivastigmine,
galantamine, and memantine) are currently being used to miti-
gate AD symptoms, but these drugs have not been able to pre-
vent or reverse disease progression [17,18]. As of 2018, 112
anti-AD agents are under investigation. Approximately 27% of
these agents now in phase III clinical trials and ~ 5% in phase II
clinical trials are BACE1 inhibitors [19]. As of 2019, the BACE1 in-
hibitors LY-3314814, MK-8931 (verubecestat), and LY-3202626
have been dropped from clinical trials. Some of BACE1 inhibitors
like elenbecestat is progressing through the clinical trials [20,
21]. Every year several drugs are being developed to treat AD in
hopes of satisfactory results, but most of them fail at the preclin-
ical stage, even before entering clinical trials. There are different
approaches for targeting BACE1, like inhibition of activity and
suppression of BACE1 expression [22,23]. As of 2019, less than
2% of the drugs in studies act by inhibition of BACE1 activity. Inhi-
bition of BACE1 by natural products has rendered promising re-
sults in AD therapeutics as exemplified by flavonoids (galangin,
myricetin, baicalein), alkaloids (berberine), terpenes, etc., which
have shown BACE1 inhibition. These compounds show significant
potential to act as therapeutic drugs. Further efficient strategies
for inhibiting BACE1 activity is required in order to reduce the side
effects caused by biological functions due to its long-term use
[24].

The C99 cleavage can be impaired without interfering with
multifunctional neuregulin 1 processing, which is a potential sub-
strate of BACE1. This, combined with the possibility of compart-
mentalisation of the target, specifically targeting BACE1 inhibitors
to endosomal compartments, preventing action on non-amyloid
substrates [25], has paved the future for the development of a
promising BACE1-based anti-AD therapeutic approach. The iden-
tification of further βAPP-selective natural BACE1 inhibitors could
be advantageous, as this would prevent the secondary adverse ef-
fects due to cleavage of other substrates supporting some impor-
tant physiological functions. The comprehension of safety profiles
of many natural compounds showing potential BACE1 inhibition is
already well understood due to its long-term use in traditional
Chinese medicine (TCM) and Ayurvedic medicine. Some of the
natural compounds that are widely used in traditional medicinal
care with an emphasis on flavonoids, phenolic compounds, tan-
nins, alkaloids, chalcones, and terpenes and exhibit effective ac-
tion by the inhibition of BACE1 activity at low concentrations are
discussed below.
Search Strategy
A systemic search was carried out for literature in electronic data-
bases, including PubMed, Scopus, Embase, Web of Science, Sci-
ence Direct, and Google Scholar and were screened for natural
compounds that exhibited potential BACE1 activity inhibition. In
vivo, in vitro, and clinical evidence that assessed the therapeutic
and preventive potential of natural compounds against the BACE1
enzyme involved in the production of Aβ, which is a major compo-
nent of amyloid plaques and neurofibrillary tangles, were col-
1317



▶ Fig. 1 Schematic representation of βAPP processing and generation of Aβ peptides.
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lected. Relevant articles where searched to obtain natural BACE1
activity inhibitors for the mitigation of AD and its symptoms. The
following key words were used to obtain significant data about
the topic: Alzheimerʼs disease, BACE1, natural compounds, BACE1
activity, and BACE1 inhibitors. The articles focusing on plant ex-
tracts or modified compound derivatives showing BACE1 inhibi-
tion were excluded in the study. Only full length articles available
in the English language were reviewed.
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Flavonoids Having Potential Anti-beta-Site
Amyloid Precursor Protein-Cleaving
Enzyme 1 Activity

Descamps et al. [26] identified two bioflavonoids, rutin (1) (found
in Fagopyrum esculentum Moench) and galangin (2) (found in Alpi-
nia officinarum Hance), which have the ability to impair BACE1
cleavage by acting as βAPP-selective BACE1 inhibitors. Galangin
in cell culture studies and AD transgenic mice studies (J20 mice)
conducted (at dosages of 50 µM and 40mg/kg, respectively)
showed inhibition of BACE-dependent βAPP nuclear signalling,
without affecting neuregulin. Hence, these commonly used nutri-
tional supplement showed a novel mechanism to modulate βAPP
processing even at lower concentrations, avoiding potential toxic-
ity caused by direct inhibition of BACE1.

Baicalein (3) (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a
flavone isolated from the roots of Scutellaria baicalensis Georgi. It
is used inTCM and known to have potent antioxidant and free rad-
ical scavenging properties [27]. Recently, it gained attention due to
its ability to act against neurodegenerative diseases [28,29]. Baica-
lein (3) has been shown to have more potent anti-BACE1 activity
when compared with other flavonoid compounds like luteolin and
quercetin, with an IC50 value of about 10 µM [30]. Baicalein (3) has
been shown to inhibit BACE1 activity as well as Aβ oligomerisation
and fibrillation, and prevents Aβ-induced toxicity in PC12 cells
1318
along with the disaggregation of preformed Aβ amyloid fibrils
[31]. The ability of the compound to cross the BBB is found to be
negatively correlated with dose [31]. Gu et al. [32] suggest that
the long-term oral administration of baicalein (3) leads to the re-
duction in BACE1 protein levels. Durairajan et al. [33] reported that
prolonged treatment of baicalein led to enhanced Aβ deposition in
both N2a-Swedish APP cells and TgCRND8 APP transgenic mice
[33]. However, no significant changes in BACE1 protein levels were
obtained in TgCRND8 APP transgenic mice when treated with bai-
calein. The Aβ increasing effect of baicalein might be due to its off-
target action, probably via impairing ubiquitin proteasomal clear-
ance function. These are significantly visible only while the admin-
istration of the compound is done in increased dosages of 25mg/
kg/day. Zhang et al. [28] reported that Chinese hamster ovary cells
expressing wild-type APP and Tg2576 mice, when treated with
baicalein, showed reduced Aβ through promotion of the non-amy-
loidogenic pathway. This contrast in data might be due to the dif-
ference in incubation time. The data showing a decrease in the
sAPPβ level is not shown in the study of Zhang et al. Hence, baica-
lein may modulate BACE1 in an extremely dose-dependent man-
ner.

Camellikaempferoside B (4) is a natural acylglycoside flavone
compound that is isolated from Fuzhuan brick tea [fermented
Camellia sinensis (L.) Kuntze]. The structure of the compound con-
tains groups of p-coumaric acid and rhamnopyranosyl along a
kaempferol backbone. Yang et al. [34] showed that camelli-
kaempferoside B (4) does not interfere with BACE1 expression,
but it reduces BACE1 activity at a concentration of 25 µM in both
a cell-free system and in APP-expressing cells. This compound acts
on several of the active sites in BACE1 via hydrogen bonds, leading
to a reduction in BACE1 activity and Aβ production. Preformed
fibril disaggregation is shown by camellikaempferoside B (4), and
this compound has also been shown to form structurally abnormal
Aβ oligomers, which are not involved in pathogenesis [34].

Quercetin (5) is a flavonoid compound that is abundantly
found in plants like Allium cepa L., Malus pumila Mill., etc. [35].
Naushad M et al. Natural Compounds with… Planta Med 2019; 85: 1316–1325
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Shimmyo et al. [36] has shown that quercetin (5) reduces BACE1
activity in a cell-free system (IC50 of 5.4 ± 0.5 µM). In a neuronal
cell system, the compound has also showed BACE1 reducing ac-
tivity (IC50 of 50 µM). The compound appears to maintain its sta-
bility for about 24 h in vivo. Lu et al. [37] reported that quercetin-
treated male C57BL/6 strain mice exhibited reduced BACE1 ex-
pression. Quercetin may reduce BACE1 expression and, thus, neg-
atively regulate the amyloidogenic processing of βAPP. But the da-
ta provided does not show much significant reduction in BACE1
protein levels as claimed. Nevertheless, the abundance, stability,
and wide availability of the compound and its action on the neu-
ronal cell system provides a need for further studies.

Myricetin (6) is a plant-derived flavonoid compound that be-
longs to the class of polyphenols [38]. Due to its structural similar-
ity to quercetin (5), myricetin (6) is sometimes referred to as hy-
droxyquercetin [39]. Since myricetin (6) has antioxidant proper-
ties, it has also been reported to show a neuroprotective effect
against neuronal cell injury induced by Aβ [40]. The small molecu-
lar weight and hydrophobic characteristics may help it to cross the
BBB, thus giving it a therapeutic advantage [41]. Shimmyo et al.
[40] have reported that myricetin (6) has dual activity, as it can di-
rectly inhibit BACE1 activity without affecting protein expression
and showed activation of α secretase (ADAM10) in a cell-free en-
zyme activity assay. The IC50 of myricetin (6) was calculated to be
2.8 µM in inhibiting BACE1 activity. Three hydrogen bonds formed
bymyricetin (6) with BACE1 (one eachwithGln 73 and Trp 198, and
onewith Asp32) stabilise the binding. The effect ofmyricetin (6) on
neuronal cells is less than expected. Myricetin (6) has been shown
to be unstable. This might be because, after 24 h of treatment, the
compound is metabolised, losing the hydroxyl groups essential for
BACE1 inhibition [40]. Myricetin (6) exhibits β-sheet structure dis-
ruption activity and also inhibits Aβ fibril generation [42].

Genistein (7) is an isoflavone compound isolated from Glycine
max (L.) Merr., which inhibited BACE1 activity in a dose-depen-
dent manner with an IC50 value of 6.3 × 10−5 M. It inhibits BACE1
activity in a noncompetitive reversible manner. In in vivo and cell-
based studies, genistein (7) has also been shown to inhibit Aβ-in-
duced inflammation and cell death [43–45]. Even at a higher con-
centration of 500mg/kg/day in rats, it was found to be pharmaco-
logically safe [46]. It was noted that even at a lower concentra-
tion, the compound was able to cross the BBB without causing
any neurotoxicity [46]. The significance of the compound, to be
considered as a potential candidate for AD treatment, requires
further studies. The structure of flavonoids exhibiting potent
anti-BACE1 activity is depicted in ▶ Fig. 2.
Phenolics and Tannins Having Potential
Anti-beta-Site Amyloid Precursor
Protein-Cleaving Enzyme 1 Activity

Salvianolic acid B (8) (Sal B) was isolated from the root of Salvia
miltiorrhiza Bunge (Lamiaceae family) [47]. This plant is widely
used to treat cardiovascular and cerebrovascular diseases [48,
49]. Sal B (8) is a water-soluble polyphenolic caffeic acid derivative
[50]. Lin et al. [51] showed that Sal B (8) can protect neuronal PC-
Naushad M et al. Natural Compounds with… Planta Med 2019; 85: 1316–1325
12 cells from Aβ-induced toxicity. Further studies conducted by
Durairajan et al. [52] reported that Sal B (8) can disaggregate pre-
formed fibrils and inhibit Aβ fibril formation. Tang et al. and
Durairajan et al. independently reported that Sal B modulated
BACE1 activity in SH-SY5Y-APPsw cells and it decreased Aβ gener-
ation in H4-SwedAPP, N2a-SwedAPP, and HEK‑BACE1 cells. Many,
possibly important, variations can be noticed in these studies:
i) Tang et al. suggested that BACE1 expression was reduced at
50 µM [53], but Durairajan et al. [54] showed that Sal B (8) does
not affect BACE1 expression. It only reduces BACE1 activity;
ii) Tang et al. used a narrow range of concentrations (25–50 µM)
of Sal B (8), whereas the other study used concentrations varying
from 1–50 µM; iii) The higher concentrations of Sal B (8) may af-
fect cellular viability, possibly leading to toxicity. Durairajan et al.,
in their studies, reported cellular toxicity and viability by the LDH
and MTT analyses and found the range of concentrations to be
safe. Tang et al. did not provide cellular viability results; iv) The
decrease in the level of sAPPβ coincides with a decrease in CTFβ
fragments. No data on CTFβ fragments was provided in the other
study; and v) Durairajan et al. provided data of molecular docking
and Sal B shows slight binding to the catalytic domain, whereas
Tang et al. did not provide docking studies. Yu et al. [55] reported
that Sal B shows negligible binding to the catalytic sites using mo-
lecular docking methods. Tang et al. suggest that Sal B suppresses
BACE1 expression. But due to discrepancies between these re-
sults, further studies are required to clearly understand the mech-
anism of action of Sal B on BACE1 (▶ Fig. 3).

Ferulic acid (9) is a phenolic compound that is included in the
human diet, as it is found in cereals like Oryza sativa L. and Triticum
aestivum L., in fruits like Solanum lycopersicum L., Ananas comosus
(L.) Merr., and Citrus sinensis (L.) Osbeck, and in vegetables [56].
The compound is known to possess anti-inflammatory, anti-carci-
nogenic and antioxidant properties [57–59]. Mori et al. [56] re-
ported that ferulic acid (9) acts by targeting BACE1, both in in vitro
and in vivo studies conducted. At the concentration of 1.57 µM,
this compound significantly reduced Aβ variants [57]. In a cell-free
BACE1 activity assay, it was demonstrated that ferulic acid (9) acts
on BACE1 by both directly attenuating BACE1 enzymatic activity
and targeting BACE1 stability without affecting mRNA expression
levels. Ferulic acid (9) has a low molecular weight (194.18 g/mol)
[60], high bioavailability in rat models [57], and remains stable in
the body, which serves as an advantage in therapeutics; however,
due to its nature as a charged molecule with a hydroxyl group, its
ability to cross the BBB remains uncertain [56]. Some reports have
suggested the presence of the molecule in rodent brains following
peripheral administration [60]. Hence, ferulic acid (9) and its de-
rivatives have the potential to combat AD.

Tannic acid (10) is present in plants like Quercus velutina Lam.,
Camellia sinensis (L.) Kuntze, etc. Oral administration of tannic acid
(10) improved behavioural impairment, reduced cerebral amyloi-
dosis, and increased the anti-amyloidogenic βAPP processing in in
vivo studies conducted in transgenic PSAPP mice (30mg/kg/day
dosage) without exhibiting any side effects [61]. Moreover, tannic
acid has shown to dose dependently downregulate the generation
of Aβ40 and Aβ42 and inhibit the level of CTFβ cleavage products
[61]. It was also noted that tannic acid inhibits BACE1 expression
and β secretase activity without altering BACE1 mRNA, promoting
1319



▶ Fig. 2 Structures of flavonoids rutin (1), galangin (2), baicalein (3), camellikaempferoside (4), quercetin (5), myricetin (6), and genistein (7)
having BACE1 inhibitory activity.
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non-amyloidogenic βAPP processing [61]. These properties in-
crease the potential of tannic acid to progress into clinical studies.
The structures of phenolics and tannins showing anti-BACE1 activ-
ity are depicted in ▶ Fig. 4.
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e

Alkaloids Showing Inhibition of beta-Site
Amyloid Precursor Protein-Cleaving
Enzyme 1 Activity

Berberine (11) is a multifunctional isoquinoline alkaloid with neu-
ropharmacological properties, which can be isolated from plants
like Coptis chinensis Franch., Berberis vulgaris L., and many more
[62]. Asai et al. [63] showed that berberine modulated βAPP pro-
cessing, resulting in a reduction of the Aβ protein. In our previous
study, the chronic administration of berberine (11) in transgenic
AD mice for approximately 4 months showed significant mitiga-
tion of Aβ pathology without influencing BACE1 protein levels at
an oral dosage of 25 or 100mg/kg per day [62]. In vivo studies
have suggested that that berberine (11) is able to cross the BBB
and reach the brain in a dose- and time-dependent manner [64].
1320
It was reported that the berberine reduced BACE1 activity and
prevented the neurodegeneration of the hippocampus in a rabbit
model of AD [65]. Cai et al. [66] established that berberine inhibits
β/γ-secretases (main components PS1, Aph-1α, and Pen-2) activ-
ity and enhances α-secretase, thereby alleviating Aβ pathology in
the brains of AD transgenic mice. However, the BACE1 inhibitory
activity of berberine (11) was found to be less (IC50 value
> 100 µM) [67]. In another study, through surface plasmon reso-
nance (SPR) binding analysis and docking studies, the direct bind-
ing of berberine and BACE-1 was illustrated [68]. Reports of ber-
berine acting on the BACE1 expression levels are also available,
hence, further studies are required for the identification of the
potential mechanism of action of the compound [69]. No poten-
tial toxicity was shown by the compound in both the in vivo and in
vitro studies conducted, but protoberberine alkaloids such as the
epiberberine (12) groenlandicine (13) exhibit promising dose-de-
pendent BACE1 noncompetitive inhibition with IC50 values of 8.55
and 19.68 µM, respectively [67]. Further evaluation of the proto-
berebrine compounds can provide valuable insight on its mecha-
nism of action. The structures of alkaloids having anti-BACE1 ac-
tivity are depicted in ▶ Fig. 4.
Naushad M et al. Natural Compounds with… Planta Med 2019; 85: 1316–1325



▶ Fig. 3 Salvianolic B binds to the active site (Asp 32, Asp 228) of
BACE1 thus preventing its activity. Similarly, the other BACE1 inhib-
itors bind to the active site of the enzyme and disturb its enzyme
activity.

▶ Fig. 4 Structures of salvianolic acid B (8), ferulic acid (9),
and tannic acid (10) having BACE1 inhibitory activity.

▶ Fig. 5 Structures of alkaloids [berberine (11), epiberberine (12),
groenlandicine (13)] and chalcones [2,2′,4′-trihydroxychalcone
acid (14), cardamonin (15)] with anti-BACE1 activity.
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Chalcones

2, 2′,4′-Trihydroxychalcone acid (TDC) (14) from Glycyrrhiza gla-
bra L. (licorice) (chalcones-flavanoids) noncompetitively inhibits
BACE1 activity (Ki value of 3.08 µM). With an IC50 of 2.5 µM, TDC
(14) showed a dose-dependent decrease in the generation of
Aβ40 and Aβ42 levels in HEK293-APPswe cells by effectively sup-
pressing BACE1 activity on the βAPP [70]. In the above cell-based
assay and in vivo (B6C3-Tg mice) study, TDC (14) effectively de-
creased Aβ in cells by suppressing BACE1 activity without exhibit-
ing any off-target effect on α and γ secretases and showed no ef-
fect on BACE1 protein levels. It ameliorated the neurobehavioural
activities and memory impairment in an AD mouse model at a
dosage of 9mg/kg per day with no obvious animal toxicity [70].

Cardamonin (15), a chalconoid, isolated from Boesenbergia ro-
tunda (L.) Mansf. has a strong inhibition value with an IC50 value of
4.35 ± 0.38 µM. The compound does not affect the TACE (α secre-
tase) to cause any detrimental effects.The docking studies, with
− 9.5 kcal/mol results, suggest its affinity to tightly bind to the en-
zyme and it has been proved to easily pass the BBB [71]. The oral
administration of cardamonin (15) for 30 weeks at the dose of
10mg/kg did not exhibit any apparent toxicity, thus suggesting
its safe consumption, but further tests such as in vitro, in vivo and
cell viability should be done in order to justify the effectiveness of
the compound [72]. Further confirmation of these results warrant
the use of chalcones as therapeutic agents for AD. The structures
of alkaloids and chalcones having anti-BACE1 activity are depicted
in ▶ Fig. 5.

Terpenes

Gracilins are secondary metabolites that are derived from the ma-
rine sponge Spongionella Bowerbank. Leirós et al. [73] isolated sev-
eral natural compounds from the marine sponge and conducted
several in vivo and in vitro studies and found that gracilins can ef-
fectively reduce tau hyperphosphorylation and Aβ accumulation.
Its successful action of Aβ reduction may be caused by its effective
inhibition of the BACE1 enzyme. In SH-SY5Y tau441 human cell
lines and 3 xTg-AD mice studies, it was noted that gracilin L (16)
at a mere concentration of 1 µM exhibited a significant BACE1 re-
duction, decreasing its activity by 24.6 ± 4.2% [74]. Even though
Naushad M et al. Natural Compounds with… Planta Med 2019; 85: 1316–1325
the other gracilins obtained showed BACE1 inhibition activity,
the % of decrease is comparatively not significant. Gracilin L (16)
reduced the expression of tau levels by 48.2 ± 8.5% at a concen-
tration of 1 µM. The levels of Aβ accumulation found in vivo after
treatment with 0.04mg/kg of gracilin L (16) showed an 86.2% de-
crease. The multitarget mechanism of action of the gracilin com-
pound on various targets led to ERK inhibition, and BACE1 inhibi-
tion correlated with the action of reduced tau hyperphosphoryla-
tion. A decrease of Aβ highlights the value of the natural com-
1321



▶ Fig. 6 Structures of terpenoid compounds gracilin L (16), ginsenosides Re (17), Rg1(18), Rg3 (19), asperterpene A (20), and asperterpene B (21)
with anti-BACE1 activity.
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pound to be used for targeting AD. The neuroprotective action re-
ported earlier by Leirós et al. [74] was further cemented by the
current data. Further studies might be required in order to lament
the priority and viability of usage of this compound for AD treat-
ment.

Ginsenosides, the major pharmacologically active compounds
isolated from various species of ginseng like Panax ginseng C.A.
Mey., have also been observed to reduce BACE1, albeit with a dif-
ferent mode of action. Ginsenosides are steroidal triterpenoid
saponins with a four-ring steroid backbone. Chen et al. [75] re-
ported that three ginsenosides [Re (17), Rg1 (18) or Rg3 (19)] at
a dose of 25mg/kg significantly reduced the amount of Aβ40/
Aβ42 conducted in a cellular-based assay in Tg2576 mice. Ji et al.
[76], in the same year, reported that ginsenoside Re (17) protects
PC12 cells from cellular injury induced by amyloid Aβ. Ginseno-
sides Re (17) was observed to reduce BACE1 activity along with
BACE1 expression, having no effect on the total APP levels and
sAPPα levels in in vitro studies [77]. Ginsenoside Rg1 (18) showed
improved memory and learning capacity in in vitro studies con-
ducted. Wang et al. [78] reported that ginsenoside Rg1 (18)
downregulated BACE1 activity and protects against Aβ-induced
cytotoxicity in in vitro studies conducted in PC12 cells. The IC50

value of Rg1 was 6.18 ± 0.96 µM.
1322
Asperterpenes A and B (20 and 21), meroterpenoids obtained
from the soil-derived mold Aspergillus terreus Thom., have shown
potent BACE1 inhibitory activities in a cell-based assay using
HEK‑BACE1 cells. The IC50 values of the asperterpenes A and B
(19 and 20), obtained were 78 and 59 nM, respectively. When
HEK-293 and N2a-APP cell lines were treated with asperterpene
A (20) at a concentration of 70 nM, it significantly reduced Aβ42
formation and inhibited BACE1 activity. In animal studies con-
ducted on triple transgenic mice (3XTgAD mice), asperterpene A
(21) treatment ameliorated learning and memory deficit along
with BACE1 activity (concentration 2 µg/µL). The exposure of the
cells to this compound did not affect cell viability or cause toxic
effects in the in vivo and in vitro studies conducted [79]. Qi et al.
[80] isolated new meroterpenoids, asperterpenes from Aspergillus
terreus, cultured on Oryza sativa L. Of the 10 isolated compounds,
asperterpenes E, F, and J exhibited better BACE1 inhibitory activ-
ities compared to others, with IC50 values of 3.32, 5.85, and
31.68 µM, respectively, in a BACE1 FRET (fluorescence resonance
energy transfer) inhibition experiment. Terreusterpenes A and B,
which are compounds isolated from extracts of A. terreus, dis-
played potential BACE1 inhibitory activity in in vitro studies (IC50

values of 5.98 and 11.42 µM) [81]. Compounds isolated from
A. terreus, up till now, have displayed one of the strongest inhib-
Naushad M et al. Natural Compounds with… Planta Med 2019; 85: 1316–1325



itions against BACE1 activity and reduction in the formation of Aβ.
These findings thus warrant the use of asperterpenes as an anti-
AD therapeutic agent. The structures of terpenes and terpenoids
showing anti-BACE1 activity are depicted in ▶ Fig. 6.
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Conclusion and Future Perspectives
The potential of BACE1 to act as a therapeutic target in the treat-
ment of AD has only been investigated for the past decade. Evi-
dence suggests that the timing of administration of BACE1 inhib-
itors may play a critical role in the successful treatment of AD. The
advancement in future diagnostic technologies will lead to the
identification of high-risk individuals easier and, hence, provide
potential for early treatment [82]. The side effects related to
BACE1 inhibition are of some concern, but the novel method of
βAPP-selective BACE inhibition reduces the risks. The identifica-
tion and characterisation of natural BACE1 inhibitors have poten-
tial in anti-AD therapeutics, as the long-term use of these com-
pounds in different ancient treatments also provides an advan-
tage of its safety profile. All natural products discussed in this re-
view article have the ability to effectively inhibit BACE1 activity
and lower neurotoxic Aβ formation. Focussing on the effects of
the natural compounds on their action as anti-AD therapeutic
agents brings focus to their mechanistic view of action by specifi-
cally targeting BACE1 substrate without any off-target action. In
the future, we may discover more natural compounds showing se-
vere efficiency, specificity, bioavailability, and safety with an ef-
fective grip on the various novel mechanisms of action to effi-
ciently treat AD.
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