Tierarztl Prax Ausg K Kleintiere Heimtiere 2019; 47(06): 402-410
DOI: 10.1055/a-1027-2533
Originalartikel

Verlaufsuntersuchungen bei Deutschen Jagdterriern mit belastungsabhängiger metabolischer Myopathie

Follow-up study in German Hunting Terrier dogs with exercise induced metabolic myopathy
Franziska Mühlhause
1   Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
2   AniCura Tierklinik Trier GbR
,
Andrea Tipold
1   Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
,
Karl Rohn
3   Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Stiftung Tierärztliche Hochschule Hannover
,
Vincent Lepori
4   Institut für Genetik, Vetsuisse-Fakultät, Universität Bern, Schweiz
,
Tosso Leeb
4   Institut für Genetik, Vetsuisse-Fakultät, Universität Bern, Schweiz
,
Adrian C. Sewell
5   Biocontrol, Labor für veterinärmedizinische Diagnostik, Ingelheim
,
Marion Kornberg
2   AniCura Tierklinik Trier GbR
› Author Affiliations

Zusammenfassung

Gegenstand und Ziel Die belastungsabhängige metabolische Myopathie beim Deutschen Jagdterrier ist eine autosomal-rezessive Erbkrankheit, die aufgrund einer Punktmutation zu einem Enzymdefekt der sehr langkettigen Acyl-CoA-Dehydrogenase führt und klinisch durch belastungsabhängige Schwäche, schwere Myalgien und Myoglobinurie charakterisiert ist. In dieser Studie wurde der klinische Verlauf der Erkrankung bei 9 betroffenen Deutschen Jagdterriern über 1 Jahr untersucht. Die Behandlung der Hunde umfasste die orale Supplementierung von L-Carnitin und Koenzym Q10 sowie eine Diät mit hohem Kohlenhydratgehalt und einem niedrigen Anteil an langkettigen Fettsäuren.

Material und Methode Die 9 Hunde mit nachgewiesenem Gendefekt wurden bei Auftreten der ersten Symptome (Messzeitpunkt 1, MZP1) und 1 Jahr später (Messzeitpunkt 2, MZP2) klinisch-neurologisch untersucht und es erfolgte eine Blutuntersuchung mit Analyse hämatologischer und klinisch-chemischer Parameter sowie der Konzentration des natriuretischen Peptids Typ B (NT-proBNP).

Ergebnisse Zum MZP2 zeigten die Hunde, wie bereits zum MZP1, nach Belastung ein steifes Gangbild, Muskelschwäche und -schmerz und hatten einen dunkelbraun verfärbten Urin. Bei den hämatologischen Parametern und der NT-proBNP-Konzentration ergaben sich, wie zum MZP1, keine Abweichungen vom Referenzbereich. Die Aktivitäten der Kreatinkinase und Alanin-Aminotransferase unterschieden sich statistisch nicht signifikant zwischen beiden MZP (pCK = 0,31, pALT = 0,64). Nach Auswertung einer Besitzerbefragung und der klinisch-neurologischen Untersuchung der Hunde ließ sich im Rahmen der Verlaufsuntersuchung keine Verbesserung der myopathischen Beschwerden feststellen.

Schlussfolgerung und klinische Relevanz Die orale Supplementierung von L-Carnitin und Koenzym Q10 sowie spezielle diätetische Maßnahmen über 1 Jahr führten zu keiner Verbesserung der klinischen Symptomatik oder der untersuchten Laborparameter. Die Tiere zeigten keine progressive Verschlechterung der Symptomatik im Vergleich zur Erstvorstellung. Die Prognose ist jedoch als vorsichtig zu bezeichnen, da Daten zum Langzeitverlauf über einige Jahre fehlen. Unsere Ergebnisse bilden eine Grundlage für weitere Forschungen zu Lipidspeichermyopathien, insbesondere mit Fokus auf die belastungsabhängige metabolische Myopathie des Deutschen Jagdterriers, deren Therapie und eine entsprechende Zuchthygiene.

Abstract

Objective Exercise induced metabolic myopathy in German Hunting Terrier dogs is an autosomal-recessively inherited disorder, caused by a nonsense variant of the gene encoding for the very long-chain acyl-CoA-dehydrogenase (VLCAD) enzyme. Clinical signs include exercise- induced fatigue, muscle pain and weakness. In the present study, the long-term course of this disease was investigated over a period of 1 year in 9 affected German Hunting Terriers. The dogs were treated symptomatically with oral L-carnitine, coenzyme Q10 and a special diet characterized by a low content of long-chain fatty acids and a high proportion of carbohydrates.

Material and methods In 9 affected dogs, the phenotype as well as clinical, laboratory parameters, and histopathological findings are described (time point 1) and compared to follow-up examinations 1 year later (time point 2). At both time points clinical and neurological examinations, complete blood cell count, clinical chemistry profile and the concentration of brain natriuretic peptide (NT-proBNP) were investigated.

Results In the follow-up examinations, the same post-exercise clinical signs were present as in the initial presentation of the homozygous dogs. Dark-brownish discoloration of the urine, weakness, myalgia as well as stiff and tetraparetic gait were apparant. All hematological values and the concentration of NT-proBNP were within the relevant reference ranges. Plasma CK and ALT activities were compared between the first presentation and the follow- up examination and no significant differences were detected (pCK = 0.31, pALT = 0.64). Signs of myopathy remained unchanged throughout the examination period.

Conclusion and clinical relevance Oral supplementation with L-carnitine, coenzyme Q10 and the special dietary management did not result in any improvement of clinical signs or laboratory parameters. No progression of the disease was observed. The prognosis for affected dogs remains cautious as long-term observations of affected dogs over several years are lacking. Our findings provide further important information on inherited disorders of mitochondrial β-oxidation in dogs, especially focused on the exercise induced metabolic myopathy in the German Hunting Terrier. This may provide new insights for novel treatment modalities in conjuntion with the development of improved breeding guidelines.



Publication History

Received: 19 July 2019

Accepted: 27 September 2019

Article published online:
06 December 2019

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Andresen BS, Olpin S, Poorthuis BJ. et al. Clear correlation of genotype with disease phenotype in very-long-chain Acyl-CoA dehydrogenase deficiency. Am J Hum Genet 1999; 64 (02) 479-494
  • 2 Aoyama T, Souri M, Ueno I. et al. Cloning of human very-long-chain acyl-coenzyme A dehydrogenase and molecular characterization of its deficiency in two patients. Am J Hum Genet 1995; 57 (02) 273-283
  • 3 Aoyama T, Ueno I, Kamijo T. et al. Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid beta-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem 1994; 269 (29) 19088-19094
  • 4 Biegen VR, McCue JP, Donovan TA. et al. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog. Front Vet Sci 2015; 2: 64
  • 5 Bradley WG, Hudgson P, Gardner-Medwin D. et al. Myopathy associated with abnormal lipid metabolism in skeletal muscle. Lancet 1969; 293 (7593):: 495-498
  • 6 Di Giovanni S, Mirabella M, Spinazzola A. et al. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology 2001; 57 (03) 515-518
  • 7 Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J 1996; 320: 345-357
  • 8 Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179 (4076) 899-902
  • 9 Finsterer J. Mitochondriopathien. Aktuelle Neurologie 1997; 24 (06) 231-241
  • 10 Fox PR, Oyama MA, Hezzell MJ. et al. Relationship of plasma N-terminal pro-brain natriuretic peptide concentrations to heart failure classification and cause of respiratory distress in dogs using a 2nd generation ELISA assay. J Vet Intern Med 2015; 29 (01) 171-179
  • 11 Gempel K, Topaloglu H, Talim B. et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007; 130 (08) 2037-2044
  • 12 Goetzman ES, Wang Y, He M. et al. Expression and characterization of mutations in human very long-chain acyl-CoA dehydrogenase using a prokaryotic system. Mol Genet Metab 2007; 91 (02) 138-147
  • 13 Gregersen N, Andresen BS, Corydon MJ. et al. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 2001; 18 (03) 169-189
  • 14 Lepori V, Mühlhause F, Sewell AC. et al. A nonsense variant in the ACADVL gene in German Hunting Terriers with exercise induced metabolic myopathy. G3 (Bethesda) 2018; 8 (05) 1545-1554
  • 15 Liang WC, Nishino I. Lipid storage myopathy. Curr Neurol Neurosci Rep 2011; 11 (01) 97-103
  • 16 Lindner M, Hoffmann GF, Matern D. Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 2010; 33 (05) 521-526
  • 17 McAndrew RP, Wang Y, Mohsen AW. et al. Structural basis for substrate fatty acyl chain specificity crystal structure of human very-long-chain acyl-CoA dehydrogenase. J Biol Chem 2008; 283 (14) 9435-9443
  • 18 Merinero B, Pascual SP, Perez-Cerda C. et al. Adolescent myopathic presentation in two sisters with very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1999; 22 (07) 802-810
  • 19 Miller MJ, Burrage LC, Gibson JB. et al. Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coA dehydrogenase (VLCAD) deficiency in the United States. Mol Genet Metab 2015; 116 (03) 139-145
  • 20 Minetti C, Garavaglia B, Bado M. et al. Very-long-chain acyl-coenzyme A dehydrogenase deficiency in a child with recurrent myoglobinuria. Neuromuscul Disord 1998; 8 (01) 3-6
  • 21 Ogilvie I, Pourfarzam M, Jackson S. et al. Very long-chain acyl coenzyme A dehydrogenase deficiency presenting with exercise-induced myoglobinuria. Neurology 1994; 44 (3 Pt 1):: 467-473
  • 22 Ohkuma A, Noguchi S, Sugie H. et al. Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 2009; 39 (03) 333-342
  • 23 Onkenhout W, Venizelos V, Van der Poel PF. et al. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders. Clin Chem 1995; 41 (10) 1467-1474
  • 24 Platt SR, Olby NJ. Exercise intolerance and collapse. In: Platt SR, Shelton GD. ed. BSAVA Manual of Canine and Feline Neurology. 4th ed.. British Small Animal Veterinary Association; 2013: 359-360
  • 25 Platt SR, Chrisman CL, Shelton GD. Lipid storage myopathy in a cocker spaniel. J Small Anim Pract 1999; 40 (01) 31-34
  • 26 Shelton GD. Rhabdomyolysis, myoglobinuria, and necrotizing myopathies. Vet Clin North Am Small Anim Pract 2004; 34 (06) 1469-1482
  • 27 Shelton GD. Canine lipid storage myopathies. In: Bonagura JD. ed. Kirk’s Current Veterinary Therapy XII: Small Animal Practice. Philadelphia: Saunders; 1995: 1161-1163
  • 28 Shelton GD, Nyhan WL, Kass PH. et al. Analysis of organic acids, amino acids, and carnitine in dogs with lipid storage myopathy. Muscle Nerve 1998; 21 (09) 1202-1205
  • 29 Skuban T, Klopstock T, Schoser B. Lipidspeichermyopathien. Nervenarzt 2010; 81 (12) 1460-1466
  • 30 Smelt AH, Poorthuis BJ, Onkenhout W. et al. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset. Annal Neurol 1998; 43 (04) 540-544
  • 31 Souri M, Aoyama T, Hoganson G. et al. Very-long-chain acyl-CoA dehydrogenase subunit assembles to the dimer form on mitochondrial inner membrane. FEBS Lett 1998; 426 (02) 187-190
  • 32 Tvarijonaviciute A, Barranco T, Rubio M. et al. Measurement of creatine kinase and aspartate aminotransferase in saliva of dogs: a pilot study. BMC Vet Res 2017; 13 (01) 168
  • 33 Vaden SL. Appendix 1. Tables of laboratory normal values. In: Knoll JS. ed. Blackwell’s Five-Minute Veterinary Consult: Laboratory Tests and Diagnostic Procedures: Canine and Feline. 4th ed.. Iowa: Wiley-Blackwell; 2011: 739
  • 34 Vianey-Saban C, Divry P, Brivet M. et al. Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. Clin Chim Acta 1998; 269 (01) 43-62
  • 35 Vockley J, Whiteman DA. Defects of mitochondrial β-oxidation: a growing group of disorders. Neuromuscul Disord 2002; 12 (03) 235-246
  • 36 Wells RJ, Sedacca CD, Aman AM. et al. Successful management of a dog that had severe rhabdomyolysis with myocardial and respiratory failure. J AmVet Med Assoc 2009; 234 (08) 1049-1054
  • 37 Wood JC, Magera MJ, Rinaldo P. et al. Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant’s newborn screening card. Pediatrics 2001; 108 (01) E19
  • 38 Zytkovicz TH, Fitzgerald EF, Marsden D. et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin Chem 2001; 47 (11) 1945-195