Int J Sports Med 2020; 41(02): 82-88
DOI: 10.1055/a-1044-2321
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Similar Effects of Acute Resistance Exercise on Carotid Stiffness in Males and Females

Georgios Grigoriadis
1   Department of Kinesiology & Nutrition, University of Illinois at Chicago, Chicago, United States
,
Alexander J. Rosenberg
2   Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, United State
,
Wesley K. Lefferts
3   College of Applied Health Sciences, University of Illinois at Chicago, Chicago, United States
,
Sang Ouk Wee
4   Department of Kinesiology, California State University San Bernardino, San Bernardino, United States
,
Elizabeth C Schroeder
1   Department of Kinesiology & Nutrition, University of Illinois at Chicago, Chicago, United States
,
Tracy Baynard
1   Department of Kinesiology & Nutrition, University of Illinois at Chicago, Chicago, United States
› Author Affiliations
Funding: WKL is currently supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number T32HL134634.
Further Information

Publication History



accepted 23 October 2019

Publication Date:
05 January 2020 (online)

Abstract

Sex differences exist in vascular responses to blood pressure perturbations, such as resistance exercise. Increases in aortic stiffness following acute resistance exercise appear different between sexes, with attenuated increases in females vs. males. Whether sex differences exist in carotid stiffness, following resistance exercise is unknown. This study sought to examine sex differences in carotid stiffness, aortic stiffness, and hemodynamics following acute resistance exercise. Thirty-five participants (18 male) completed 3 sets of 10 repetitions of maximal isokinetic knee extension/flexion. Aortic stiffness and hemodynamics were estimated using an automated oscillometric blood pressure monitor at baseline, 5- and 30-min post-exercise. Carotid stiffness was assessed by β-stiffness index, pressure-strain elastic modulus and arterial compliance using ultrasonography. Resistance exercise increased aortic stiffness, mean and systolic pressure at 5-min (p<0.01), and pressure-strain elastic modulus at 5-min in both sexes (p<0.05). Arterial compliance decreased at 5- and 30-min post exercise in both sexes (p<0.01). No interaction effects were detected in carotid stiffness, aortic stiffness, and hemodynamics, indicating similar vascular responses between sexes. Our findings indicate that the large arteries appear to stiffen similarly following resistance exercise in males and females when presented with similar blood pressure responses.

 
  • References

  • 1 Heffernan KS, Rossow L, Jae SY. et al. Effect of single-leg resistance exercise on regional arterial stiffness. Eur J Appl Physiol. 2006; 98: 185-190 doi:10.1007/s00421-006-0259-9
  • 2 Augustine JA, Lefferts WK, Heffernan KS. Sex differences in aortic stiffness following acute resistance exercise. Artery Research 2018; 23: 52-55
  • 3 Heffernan KS, Collier SR, Kelly EE. et al. Arterial stiffness and baroreflex sensitivity following bouts of aerobic and resistance exercise. Int J Sports Med. 2007; 28: 197-203 doi:10.1055/s-2006-924290
  • 4 DeVan AE, Anton MM, Cook JN. et al. Acute effects of resistance exercise on arterial compliance. J Appl Physiol (1985). 2005; 98: 2287-2291 doi:10.1152/japplphysiol.00002.2005
  • 5 Heffernan KS, Jae SY, Edwards DG. et al. Arterial stiffness following repeated Valsalva maneuvers and resistance exercise in young men. Appl Physiol Nutr Metab. 2007; 32: 257-264 doi:10.1139/h06-107
  • 6 Kingsley JD, Tai YL, Mayo X. et al. Free-weight resistance exercise on pulse wave reflection and arterial stiffness between sexes in young, resistance-trained adults. Eur J Sport Sci. 2017; 17: 1056-1064 doi:10.1080/17461391.2017.1342275
  • 7 van Sloten TT, Sedaghat S, Laurent S. et al. Carotid stiffness is associated with incident stroke: A systematic review and individual participant data meta-analysis. J Am Coll Cardiol. 2015; 66: 2116-2125 doi:10.1016/j.jacc.2015.08.888
  • 8 van Sloten TT, Schram MT, van den Hurk K. et al. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: The Hoorn study. J Am Coll Cardiol. 2014; 63: 1739-1747 doi:10.1016/j.jacc.2013.12.041
  • 9 Blacher J, Pannier B, Guerin AP. et al. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension 1998; 32: 570-574
  • 10 Bruno RM, Cartoni G, Stea F. et al. Carotid and aortic stiffness in essential hypertension and their relation with target organ damage: The CATOD study. J Hum Hypertens. 2017; 35: 310-318 doi:10.1097/HJH.0000000000001167
  • 11 Paini A, Boutouyrie P, Calvet D. et al. Carotid and aortic stiffness: Determinants of discrepancies. Hypertension. 2006; 47: 371-376 doi:10.1161/01.HYP.0000202052.25238.68
  • 12 Lefferts WK, DeBlois JP, Receno CN. et al. Effects of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in adults with and without hypertension. J Hypertens. 2018; 36: 1743-1752 doi: 10.1097/HJH.0000000000001752
  • 13 Robb AO, Mills NL, Din JN. et al. Influence of the menstrual cycle, pregnancy, and preeclampsia on arterial stiffness. Hypertension. 2009; 53: 952-958 doi: 10.1161/HYPERTENSIONAHA.109.130898
  • 14 Harriss DJ, MacSween A, Atkinson G. Standards for ethics in sport and exercise science research: 2020 Update. Int J Sports Med 2019; 40: 813-817
  • 15 Franssen PM, Imholz BP. Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit 2010; 15: 229-231
  • 16 Feistritzer HJ, Reinstadler SJ, Klug G. et al. Comparison of an oscillometric method with cardiac magnetic resonance for the analysis of aortic pulse wave velocity PLoS One. 2015; 10: e0116862 doi:10.1371/journal.pone.0116862
  • 17 Wassertheurer S, Kropf J, Weber T. et al. A new oscillometric method for pulse wave analysis: Comparison with a common tonometric method. J Hum Hypertens. 2010; 24: 498-504 doi: 10.1038/jhh.2010.27
  • 18 Hametner B, Wassertheurer S, Kropf J. et al. Oscillometric estimation of aortic pulse wave velocity: Comparison with intra-aortic catheter measurements. Blood Press Monit. 2013; 18: 173-176 doi:10.1097/MBP.0b013e3283614168
  • 19 O'Rourke MF, Staessen JA, Vlachopoulos C. et al. Clinical applications of arterial stiffness; Definitions and reference values. Am J Hypertens 2002; 15: 426-444
  • 20 Crombag HS, Sutton JM, Takamiya K. et al. A role for alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid GluR1 phosphorylation in the modulatory effects of appetitive reward cues on goal-directed behavior. Eur J Neurosci. 2008; 27: 3284-3291 doi:10.1111/j.1460-9568.2008.06299.x
  • 21 Spronck B, Delhaas T, Op 't Roodt J. et al. Carotid artery applanation tonometry does not cause significant baroreceptor activation. Am J Hypertens. 2016; 29: 299-302 doi:10.1093/ajh/hpv064
  • 22 Alam M, Smirk FH. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol 1937; 89: 372-383
  • 23 Notay K, Lee JB, Incognito AV. et al. Muscle Strength Influences Pressor Responses to Static Handgrip in Men and Women. Med Sci Sport Exer. 2018; 50: 778-784 doi:10.1249/MSS.0000000000001485
  • 24 Lim J, Pearman ME, Park W. et al. Impact of blood pressure perturbations on arterial stiffness. Am J Physiol Regul Integr Comp Physiol. 2015; 309: R1540-R1545 doi:10.1152/ajpregu.00368.2015
  • 25 Yoon ES, Jung SJ, Cheun SK. et al. Effects of acute resistance exercise on arterial stiffness in young men. Korean Circ J. 2010; 40: 16-22 doi:10.4070/kcj.2010.40.1.16
  • 26 Collier SR, Diggle MD, Heffernan KS. et al. Changes in arterial distensibility and flow-mediated dilation after acute resistance vs. aerobic exercise. J Strength Cond Res. 2010; 24: 2846-2852 doi:10.1519/JSC.0b013e3181e840e0
  • 27 Fahs CA, Heffernan KS, Fernhall B. Hemodynamic and vascular response to resistance exercise with L-arginine. Med Sci Sports Exerc. 2009; 41: 773-779 doi: 10.1249/MSS.0b013e3181909d9d
  • 28 Lefferts WK, Augustine JA, Heffernan KS. Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front Physiol. 2014; 5: 101 doi:10.3389/fphys.2014.00101
  • 29 Schroeder EC, Rosenberg AJ, Hilgenkamp TIM. et al. Effect of upper body position on arterial stiffness: Influence of hydrostatic pressure and autonomic function. J Hypertens. 2017; 35: 2454-2461 doi: 10.1097/hjh.0000000000001481
  • 30 Laurent S, Cockcroft J, Van Bortel L. et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J. 2006; 27: 2588-2605 doi: 10.1093/eurheartj/ehl254