physioscience 2020; 16(02): 72-84
DOI: 10.1055/a-1114-1975
Originalarbeit

Veränderungen im Gangbild bei Personen mit unilateraler transtibialer Amputation – Ein systematisches Literaturreview

Changes in Gait in Individuals with Unilateral Transtibial Amputation – Systematic Literature Review
Lukas Proksch
1   FH Campus Wien, Health Assisting Engineering, Wien, Österreich
,
Maria-Magdalena Véghelyi
1   FH Campus Wien, Health Assisting Engineering, Wien, Österreich
,
Agnes Sturma
1   FH Campus Wien, Health Assisting Engineering, Wien, Österreich
2   Medizinische Universität Wien, Klinisches Labor zur Bionischen Extremitätenrekonstruktion, Wien, Österreich
3   Imperial College London, Department of Bioengineering, London, Vereinigtes Königreich
› Author Affiliations

Zusammenfassung

Hintergrund Eine transtibiale Amputation und die damit verbundene Versorgung mit einer Prothese führt zwangsläufig zu einem deutlich veränderten Gangbild beim Menschen, das sich in quantifizierbaren Parametern widerspiegelt. Während ein allgemeiner Konsens bzgl. der Existenz solcher Veränderungen herrscht, fehlt bislang eine systematische Zusammenfassung von Literatur, die dieses Thema abdeckt.

Ziel Einen gesammelten Überblick über die Publikationen schaffen, die sich mit den Veränderungen des Gangbildes bei Menschen mit einer transtibialen Amputation beschäftigen. Auf dieser Basis sollen Referenzwerte als Vergleichsbasis für die Analyse des Gangbildes dieser Personengruppe sowie zukünftige Forschung präsentiert werden.

Methode Es erfolgte eine systematische Literaturrecherche mittels der Datenbanken Pubmed, CINAHL und Cochrane Library nach Studien, welche Veränderungen im Gangbild bei Menschen mit transtibialer Amputation untersuchen. Diese wurden anschließend mithilfe eines Quality-Assessment-Tools bewertet, die das Gangbild beschreibenden Parameter wurden daraus extrahiert.

Ergebnisse Es konnten 13 Studien mit insgesamt 266 Teilnehmern identifiziert werden. Diese zeigen, dass Personen mit einer transtibialen Amputation eine geringere Ganggeschwindigkeit, eine geringere Kadenz, eine größere Schrittbreite sowie eine längere Standphase verglichen mit dem physiologischen Gang aufweisen.

Schlussfolgerung Es konnten Parameter für das Gangbild bei Menschen mit transtibialer Amputationen präsentiert werden, die als Vergleichsbasis im klinischen und therapeutischen Umfeld sowie für zukünftige Studien dienen. Es zeigte sich jedoch, dass die Durchführung weitaus umfangreicherer Studien notwendig ist, um allgemein gültige Normwerte erstellen zu können.

Abstract

Background A transtibial amputation and replacement of the missing leg with a prosthesis leads to significant changes in gait pattern, which is measurable in quantifiable parameters. However, while the existence of these changes is well known and some articles about this have been published, there is currently no systematic review summarizing the findings.

Objective First aim is to provide a comprehensive overview of publications on the topic of observed changes in gait patterns of transtibial amputees. A secondary aim is to present reference gait data that could be used as a basis for comparison during physical therapy and to conduct further research.

Method A literature research was conducted using the databases Pubmed, CINAHL and Cochrane Library to identify publications investigating changes in gait parameters of transtibial amputees. These were evaluated by using a quality assessment tool and parameters describing the gait pattern were extracted.

Results A total of 266 participants in 13 studies were included showing that individuals with a transtibial amputation have a lower walking speed, a lower cadence, a greater step width, as well as a longer stance phase compared to physiological gait.

Conclusion Parameters for the gait pattern of individuals with transtibial amputations differ from physiological gait patterns and these data, can be used as a basis for comparison in clinical and therapeutic settings. Additional research with significantly larger studies is required in order to further validate the data.



Publication History

Received: 18 March 2019

Accepted: 16 December 2019

Article published online:
05 May 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Greitemann B, Brückner L, Schäfer M. et al. Amputation und Prothesenversorgung: Indikationsstellung, operative Technik, Prothesenversorgung, Funktionstraining. 4. Aufl.. Stuttgart: Thieme; 2016
  • 2 Götz-Neumann K. Gehen verstehen: Ganganalyse in der Physiotherapie; 18 Tabellen. 2. Aufl.. Stuttgart, New York: Thieme; 2006
  • 3 Ludwig O. Ganganalyse in der Praxis: Anwendungen in Prävention, Therapie und Versorgung. 1. Aufl.. Geislingen: Maurer; 2012
  • 4 Kuo AD. The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 2002; 6 (02) 129-145
  • 5 Iosa M, Paradisi F, Brunelli S. et al. Assessment of gait stability, harmony, and symmetry in subjects with lower-limb amputation evaluated by trunk accelerations. J Rehabil Res Dev 2014; DOI: 10.1682/JRRD.2013.07.0162.
  • 6 Lamoth CJC, Ainsworth E, Polomski W. et al. Variability and stability analysis of walking of transfemoral amputees. Med Eng Phys 2010; DOI: 10.1016/j.medengphy.2010.07.001.
  • 7 Moxey PW, Gogalniceanu P, Hinchliffe RJ. et al Lower extremity amputations--a review of global variability in incidence. Diabet Med 2011; 28 (10) 1144-1153 . doi:10.1111/j.1464-5491.2011.03279.x
  • 8 UNIPOD – United National Institute for Prosthetics & Orthotics Development. Limbless Statistics: Annual Report 2011–2012; 2013. 2. Aufl..
  • 9 Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther 2008; 88 (11) 1254-1264 . doi:10.2522/ptj.20080020
  • 10 Vamos EP, Bottle A, Edmonds ME. et al Changes in the incidence of lower extremity amputations in individuals with and without diabetes in England between 2004 and 2008. Diabetes Care 2010; 33 (12) 2592-2597 . doi:10.2337/dc10-0989
  • 11 Li Y, Burrows NR, Gregg EW. et al Declining rates of hospitalization for nontraumatic lower-extremity amputation in the diabetic population aged 40 years or older: U.S., 1988–2008. Diabetes Care 2012; 35 (02) 273-277 . doi:10.2337/dc11-1360
  • 12 Varma P, Stineman MG, Dillingham TR. Epidemiology of limb loss. Phys Med Rehabil Clin N Am 2014; 25 (01) 1-8 . doi:10.1016/j.pmr.2013.09.001
  • 13 Ziegler-Graham K, MacKenzie EJ, Ephraim PL. et al Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 2008; 89 (03) 422-429 . doi:10.1016/j.apmr.2007.11.005
  • 14 Esquenazi A. Gait analysis in lower-limb amputation and prosthetic rehabilitation. Phys Med Rehabil Clin N Am 2014; 25 (01) 153-167 . doi:10.1016/j.pmr.2013.09.006
  • 15 Yang L, Dyer PS, Carson RJ. et al Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait. Gait Posture 2012; 36 (03) 631-634 . doi:10.1016/j.gaitpost.2012.04.004
  • 16 Roerdink M, Roeles S, van der Pas SCH. et al. Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed. Gait Posture 2018; DOI: 10.1016/j.gaitpost.2011.11.005.
  • 17 Kolarova B, Janura M, Svoboda Z. et al Limits of stability in persons with transtibial amputation with respect to prosthetic alignment alterations. Arch Phys Med Rehabil 2013; 94 (11) 2234-2240 . doi:10.1016/j.apmr.2013.05.019
  • 18 Miller WC, Speechley M, Deathe B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch Phys Med Rehabil 2001; 82 (08) 1031-1037 . doi:10.1053/apmr.2001.24295
  • 19 Wong CK, Chihuri ST, Li G. Risk of fall-related injury in people with lower limb amputations: A prospective cohort study. J Rehabil Med 2016; 48 (01) 80-85 . doi:10.2340/16501977-2042
  • 20 Information Services Division NHSScotland. The Amputee Statistical Database for the United Kingdom 2004/05. Edinburgh: 2005
  • 21 Yeung LF, Leung AKL, Zhang M. et al Effects of long-distance walking on socket-limb interface pressure, tactile sensitivity and subjective perceptions of trans-tibial amputees. Disabil Rehabil 2013; 35 (11) 888-893 . doi:10.3109/09638288.2012.712197
  • 22 Ku PX, Abu Osman NA, Wan Abas WAB. Balance control in lower extremity amputees during quiet standing: a systematic review. Gait Posture 2014; 39 (02) 672-682 . doi:10.1016/j.gaitpost.2013.07.006
  • 23 Bhuvaneswar CG, Epstein LA, Stern TA. Reactions to amputation: recognition and treatment. Prim Care Companion J Clin Psychiatry 2007; 9 (04) 303-308 . doi:10.4088/pcc.v09n0408
  • 24 National Heart, Lung, and Blood Institute. Study Quality Assessment Tools: for Observational Cohort and Cross-Sectional Studies, for Before-After (Pre-Post) Studies With No Control Group, for Case-Control Studies. Maryland, USA. Im Internet (Stand: 10.01.2019): www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
  • 25 Perry J. Ganganalyse: Norm und Pathologie des Gehens. 1. Aufl.. München, Jena: Urban und Fischer; 2003
  • 26 Molina-Rueda F, Alguacil-Diego IM, Cuesta-Gomez A. et al. Thorax, pelvis and hip pattern in the frontal plane during walking in unilateral transtibial amputees: Biomechanical analysis. Braz J Phys Ther 2014; 18 (03) 252-258
  • 27 Molina Rueda F, Alguacil Diego IM, Molero Sanchez A. et al Knee and hip internal moments and upper-body kinematics in the frontal plane in unilateral transtibial amputees. Gait Posture 2012; 37 (03) 436-439 . doi:10.1016/j.gaitpost.2012.08.019
  • 28 Hofstad CJ, van der H L, Nienhuis B. et al. High failure rates when avoiding obstacles during treadmill walking in patients with a transtibial amputation. Arch Phys Med Rehabil 2006; 87 (08) 1115-1122
  • 29 Hordacre BG, Barr C, Patritti BL. et al Assessing gait variability in transtibial amputee fallers based on spatial-temporal gait parameters normalized for walking speed. Arch Phys Med Rehabil 2015; 96 (06) 1162-1165 . doi:10.1016/j.apmr.2014.11.015
  • 30 Hak L, van Dieen JH, van der Wurff P. et al Stepping asymmetry among individuals with unilateral transtibial limb loss might be functional in terms of gait stability. Phys Ther 2014; 94 (10) 1480-1488 . doi:10.2522/ptj.20130431
  • 31 Lin SJ, Winston KD, Mitchell J. et al Physical activity, functional capacity, and step variability during walking in people with lower-limb amputation. Gait Posture 2014; 40 (01) 140-144 . doi:10.1016/j.gaitpost.2014.03.012
  • 32 Vllasolli TO, Zafirova B, Orovcanec N. et al. Energy expenditure and walking speed in lower limb amputees: A cross sectional study. Ortop Traumatol Rehabil 2014; 16 (04) 419-426 . doi:10.5604/15093492.1119619
  • 33 Paradisi F, Delussu AS, Brunelli S. et al The conventional non-articulated SACH or a multiaxial prosthetic foot for hypomobile transtibial amputees? A clinical comparison on mobility, balance, and quality of life. ScientificWorldJournal 2015; DOI: 10.1155/2015/261801.
  • 34 Doyle SS, Lemaire ED, Besemann M. et al. Changes to level ground transtibial amputee gait with a weighted backpack. Clin Biomech (Bristol, Avon) 2013; DOI: 10.1016/j.clinbiomech.2013.11.019.
  • 35 Rowe DA, McMinn D, Peacock L. et al Cadence, energy expenditure, and gait symmetry during music-prompted and self-regulated walking in adults with unilateral transtibial amputation. J Phys Act Health 2014; 11 (02) 320-329 . doi:10.1123/jpah.2012-0056
  • 36 Samitier CB, Guirao L, Costea M. et al The benefits of using a vacuum-assisted socket system to improve balance and gait in elderly transtibial amputees. Prosthet Orthot Int 2016; 40 (01) 83-88 . doi:10.1177/0309364614546927
  • 37 Gard SA, Konz RJ. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. J Rehabil Res Dev 2003; 40 (02) 109-124
  • 38 Matjacic Z, Burger H. Dynamic balance training during standing in people with trans-tibial amputation: A pilot study. Prosthet Orthot Int 2003; DOI: 10.1080/03093640308726684.
  • 39 Mikos V, Yen SC, Tay A. et al Regression analysis of gait parameters and mobility measures in a healthy cohort for subject-specific normative values. PLoS ONE 2018; 13 (06) e0199215 . doi:10.1371/journal.pone.0199215
  • 40 Fitzpatrick AL, Buchanan CK, Nahin RL. et al Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. JAMA 2019; 03 (02) igz010 . doi:10.1093/gerona/62.11.1244
  • 41 Herold G. Innere Medizin: Eine vorlesungsorientierte Darstellung, unter Berücksichtigung des Gegenstandskataloges für die Ärztliche Prüfung, mit ICD 10-Schlüssel im Text und Stichwortverzeichnis. Köln: Herold, Gerd; 2019
  • 42 da Silva-Hamu TCD, Formiga CKMR, Gervásio FM. et al The impact of obesity in the kinematic parameters of gait in young women. Int J Gen Med 2014; 7 (01) 38-50 . doi:10.2147/IJGM.S44768
  • 43 Herskovitz S, Scelsa SN, Schaumburg HH. Peripheral neuropathies in clinical practice. Oxford, New York: Oxford University Press; 2010
  • 44 Vanicek N, Strike SC, McNaughton L. et al Lower limb kinematic and kinetic differences between transtibial amputee fallers and non-fallers. Prosthet Orthot Int 2010; 34 (04) 399-410 . doi:10.3109/03093646.2010.480964
  • 45 Kirtley C. Clinical gait analysis: Theory into practice. Edinburgh: Elsevier Churchill Livingstone; 2005
  • 46 Morio Y, Izawa KP, Omori Y. et al The relationship between walking speed and step length in older aged patients. Diseases 2019; 7 (01) 17 . doi:10.3390/diseases7010017
  • 47 Murray MP, Spurr GB, Sepic SB. et al. Treadmill vs. floor walking: kinematics, electromyogram, and heart rate. J Appl Physiol 1985; DOI: 10.1152/jappl.1985.59.1.87.
  • 48 Rosenblatt NJ, Grabiner MD. Measures of frontal plane stability during treadmill and overground walking. Gait Posture 2010; 31 (03) 380-384 . doi:10.1016/j.gaitpost.2010.01.002
  • 49 Yang F, King GA. Dynamic gait stability of treadmill versus overground walking in young adults. J Electromyogr Kinesiol 2016; 31: 81-87 . doi:10.1016/j.jelekin.2016.09.004
  • 50 Meng H, O'Connor DP, Lee BC. et al Alterations in over-ground walking patterns in obese and overweight adults. Gait Posture 2017; 53: 145-150 . doi:10.1016/j.gaitpost.2017.01.019
  • 51 Sanderson DJ, Martin PE. Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait Posture 1997; DOI: 10.1016/S0966-6362(97)01112-0.
  • 52 Silverman AK, Fey NP, Portillo A. et al Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 2008; 28 (04) 602-609 . doi10.1016/j.gaitpost.2008.04.005
  • 53 Whittle MW. Gait analysis: An introduction. 4. Aufl.. Oxford [u. a.]: Butterworth-Heinemann; 2007
  • 54 Owings TM, Grabiner MD. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J Biomech 2004; 37 (06) 935-938 . doi:10.1016/j.jbiomech.2003.11.012
  • 55 Brach JS, Berlin JE, VanSwearingen JM. et al. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J Neuroeng Rehabil 2005; DOI: 10.1186/1743-0003-2-21.
  • 56 Beauchet O, Allali G, Annweiler C. et al Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability. Gerontology 2009; 55: 702-706 . doi:10.1159/000235905
  • 57 Pell JP, Donnan PT, Fowkes FGR. et al. Quality of life following lower limb amputation for peripheral arterial disease. European Journal of Vascular Surgery 1993; DOI: 10.1016/s0950-821x(05)80265-8.
  • 58 Sinha R, van den Heuvel WJA, Arokiasamy P. Factors affecting quality of life in lower limb amputees. Prosthet Orthot Int 2011; 35 (01) 90-96 . doi:10.1177/0309364610397087