Planta Med 2020; 86(08): 571-578
DOI: 10.1055/a-1146-8369
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Identification and α-Glucosidase Inhibitory Activity of Meroterpenoids from Hericium erinaceus

Baosong Chen
1   State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
2   Savaid Medicine School, University of Chinese Academy of Sciences, Beijing, P. R. China
,
Junjie Han
1   State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
,
Li Bao
1   State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
,
Wenzhao Wang
1   State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
,
Ke Ma
1   State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
2   Savaid Medicine School, University of Chinese Academy of Sciences, Beijing, P. R. China
,
Hongwei Liu
1   State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
2   Savaid Medicine School, University of Chinese Academy of Sciences, Beijing, P. R. China
› Author Affiliations
Supported by: National Natural Science Foundation of China 21877124
Supported by: National Natural Science Foundation of China 81673334
Supported by: the National Key R&D program of China 2018YFD0400203
Supported by: the National Key R&D program of China 2017YFE0108200
Further Information

Publication History

received 03 December 2019
revised 15 March 2020

accepted 26 March 2020

Publication Date:
21 April 2020 (online)

Abstract

Hericium erinaceus is a very popular edible and medicinal mushroom used for the treatment of enervation and gastrointestinal diseases in Eastern Asia. Chemical investigation on the fruiting body of Hericium erinaceus led to the isolation of 4 new (1 – 4) and 10 known meroterpenoids (5 – 14). The structures of new compounds were determined via analysis of NMR and MS data in combination with chemical derivatization. The inhibitory activities of 1 – 14 against α-glucosidase were evaluated using p-nitrophenyl-α-D-glucopyranoside, sucrose, or maltose as substrate. Compounds 6, 9, 11 – 13 were demonstrated to show the α-glucosidase inhibitory activities. This work confirms the potential of H. erinaceus in the treatment of diabetes.

Supporting Information

 
  • References

  • 1 Wang K, Bao L, Xiong WP, Ma K, Han JJ, Wang WZ, Yin WB, Liu HW. Lanostane triterpenes from the Tibetan medicinal mushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-glucosidase. J Nat Prod 2015; 78: 1977-1989
  • 2 Ma K, Li L, Bao L, He LW, Sun C, Zhou B, Si SY, Liu HW. Six new 3,4-seco-27-norlanostane triterpenes from the medicinal mushroom Ganoderma boninense and their antiplasmodial activity and agonistic activity to LXR beta. Tetrahedron 2015; 71: 1808-1814
  • 3 Ogbole OO, Nkumah AO, Linus AU, Falade MO. Molecular identification, in vivo and in vitro activities of Calvatia gigantea (macro-fungus) as an antidiabetic agent. Mycology 2019; 10: 166-173
  • 4 Girometta C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology 2019; 10: 32-39
  • 5 Chaiyasut C, Sundaram BS. Anti-hyperglycemic property of Hericium erinaceus – a mini review. Asian Pac J Trop Biomed 2017; 7: 1036-1040
  • 6 State Administration of Traditional Chinese Medicine. Chinese Materia Medica. Shanghai: Shanghai Scientific and Technical Publishers; 1999: 522-523
  • 7 Li W, Zhou W, Cha JY, Kwon SU, Baek KH, Shim SH, Lee YM, Kim YH. Sterols from Hericium erinaceum and their inhibition of TNF-alpha and NO production in lipopolysaccharide-induced RAW 264.7 cells. Phytochemistry 2015; 115: 231-238
  • 8 Kawagishi H, Ando M, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S. Hericenones C, D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum . Tetrahedron Lett 1991; 32: 4561-4564
  • 9 Ma B, Ma J, Ruan Y. Hericenone L, a new aromatic compound from the fruiting bodies of Hericium erinaceums . Chin J Nat Medicines 2012; 10: 363-365
  • 10 Kawagishi H, Ando M, Mizuno T. Hericenone A and B as cytotoxic principles from the mushroom Hericium erinaceum . Tetrahedron Lett 1990; 31: 373-376
  • 11 Lee EW, Hosokawa S, Suzuki M, Suganuma H, Inakuma T, Li JX, Ohnishi-Kameyama M, Nagata T, Furukawa S, Kawagishi H, Shizuki K. Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum . Biosci Biotechnol Biochem 2000; 64: 2402-2405
  • 12 Kenmoku H, Sassa T, Kato N. Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. Tetrahedron Lett 2000; 41: 4389-4393
  • 13 Kawagishi H, Masui A, Tokuyama S, Nakamura T. Erinacines J and K from the mycelia of Hericium erinaceum . Tetrahedron 2006; 62: 8463-8466
  • 14 Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y, Sakemi S, Bordner J, Kojima N, Furukawa S. Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum . Tetrahedron Lett 1996; 37: 7399-7402
  • 15 Yaoita Y, Danbara K, Kikuchi M. Two new aromatic compounds from Hericium erinaceum (Bull.: Fr.) Pers. Chem Pharm Bull 2005; 53: 1202-1203
  • 16 Kimura Y, Nishibe M, Nakajima H, Hamasaki T, Shimada A, Tsuneda A, Shigematsu N. Hericerin, a new pollen growth inhibitor from the mushroom Hericium erinaceum . Agr Biol Chem 1991; 55: 2673-2674
  • 17 Li W, Lee SH, Jang HD, Ma JY, Kim YH. Antioxidant and anti-osteoporotic activities of aromatic compounds and sterols from Hericium erinaceum . Molecules 2017; 22: 108
  • 18 Zhang Z, Liu RN, Tang QJ, Zhang JS, Yang Y, Shang XD. A new diterpene from the fungal mycelia of Hericium erinaceus . Phytochem Lett 2015; 11: 151-156
  • 19 Chen L, Yao JN, Chen HP, Zhao ZZ, Li ZH, Feng T, Liu JK. Hericinoids A–C, cyathane diterpenoids from culture of mushroom Hericium erinaceus . Phytochem Lett 2018; 27: 94-100
  • 20 Liu JH, Li L, Shang XD, Zhang JL, Tan Q. Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus . J Ethnopharmacol 2016; 183: 54-58
  • 21 Zhang YT, Liu L, Bao L, Yang YL, Ma K, Liu HW. Three new cyathane diterpenes with neurotrophic activity from the liquid cultures of Hericium erinaceus . J Antibiot 2018; 71: 818-821
  • 22 Chong PS, Fung ML, Wong KH, Lim LW. Therapeutic potential of Hericium erinaceus for depressive disorder. Int J Mol Sci 2020; 21: 163
  • 23 Wang K, Bao L, Ma K, Liu N, Huang Y, Ren J, Wang W, Liu HW. Eight new alkaloids with PTP1B and α-glucosidase inhibitory activities from the medicinal mushroom Hericium erinaceus . Tetrahedron 2015; 71: 9557-9563
  • 24 International Diabetes Federation (IDF). IDF Diabetes atlas 9th edition 2019. Available at: https://www.diabetesatlas.org/en/ Accessed January 31, 2020
  • 25 Li W, Sun YN, Yan XT, Yang SY, Jo SH, Kwon YI, Kim YH. Rat intestinal sucrase and α-glucosidase inhibitory activities of isocoumarin and flavonoids from the Zanthoxylum schinifolium stems. Bull Korean Chem Soc 2014; 35: 316-318
  • 26 Li YH, Dai JM, Yang C, Jiang MY, Xiong Y, Li YK, Li HR, Tian K, Huang XZ. Phenylpropanoid and iridoid glucosides from the whole plant of Hemiphragma heterophyllum and their alpha-glucosidase inhibitory activities. Planta Med 2020; 86: 205-211
  • 27 Meesakul P, Richardson C, Pyne SG, Laphookhieo S. Flavonoids and oxepinones from the leaves and twigs of Desmos cochinchinensis and their α-glucosidase inhibitory activities. Planta Med 2019; 85: 1483-1484
  • 28 Li W, Sun YN, Zhou W, Shim SH, Kim YH. Erinacene D, a new aromatic compound from Hericium erinaceum . J Antibiot 2014; 67: 727-729
  • 29 Kawagishi H, Ando M, Shinba K, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S. Chromans, hericenones F, G and H from the mushroom Hericium erinaceum . Phytochemistry 1993; 32: 175-178
  • 30 Bischoff H. Pharmacology of α-glucosidase inhibition. Eur J Clin Invest 1994; 24: 3-10
  • 31 Rajan R, Venkataraman R, Baby S. A new lupane-type triterpenoid fatty acid ester and other isolates from Ophiorrhiza shendurunii . Nat Prod Res 2016; 30: 2197-2203
  • 32 Kwon YI, Vattem DA, Shetty K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr 2006; 15: 107-118
  • 33 Wang KJ, Zhao JL. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed Pharmacother 2019; 110: 510-517