Reverse knuckle guidewire insertion technique for endoscopic ultrasound-guided hepaticogastrostomy using a novel 0.025-inch guidewire

Endoscopic ultrasound-guided hepaticogastrostomy (EUS-HGS) is one of the biliary drainage options for patients in whom endoscopic retrograde cholangiopancreatography (ERCP) fails [1,2]. Technical tips for EUS-HGS are divided into several steps [3]. Among these steps, guidewire manipulation is one of the most challenging parts of EUS-HGS [4]. In achieving successful guidewire insertion, selection of the guidewire is an important issue. A novel, 0.025-inch guidewire has recently become available in Japan (MICHISUJI; KANEKA Medical, Osaka, Japan) (Fig. 1). High flexibility, which is one of the characteristics of this guidewire, plays an especially important role in the safe guidewire technique, which we call “knuckle guidewire insertion” [5]. Herein, we describe technical tips for “reverse” knuckle guidewire insertion during EUS-HGS.

A 78-year-old man underwent percutaneous transhepatic biliary drainage be-

Fig. 1 Photograph of the novel 0.025-inch guidewire (MICHISUJI; KANEKA Medical) that is available in Japan.

Fig. 2 Fluoroscopic images showing: a contrast medium being injected after the intrahepatic bile duct had been punctured using a 19-G needle; b the reverse knuckle shape successfully made with the guidewire; c the endoscopic retrograde cholangiopancreatography catheter inserted to dilate the fistula; d the endoscopic ultrasound-guided hepaticogastrostomy proceeding with placement of a plastic stent.
cause of a hepaticojejunostomy stricture. However, internal drainage failed, and he was referred to our hospital for EUS-HGS. The intrahepatic bile duct was identified under EUS guidance but, because the left hepatic parenchyma was enlarged, the direction of EUS scope advancement was from the opposite side of the hepatic hilum. The intrahepatic bile duct was punctured using a 19G needle, and contrast medium was injected (▶Fig. 2a; ▶Video 1). The novel MICHI SUJI guidewire was selected for advancement of the guidewire into the hepatic hilum. As shown in ▶Fig. 2b, a reverse knuckle shape was successfully made because of the flexibility of this novel guidewire, and the guidewire was inserted into the hepatic hilum. After the bile duct and stomach wall had been dilated using the ERCP catheter (▶Fig. 2c), plastic stent deployment was successfully performed without any adverse events (▶Fig. 2d).

As in the present case, if the direction of EUS scope advancement is from the opposite side of the hepatic hilum, reverse knuckle guidewire insertion using this novel guidewire may be useful for advancement of the guidewire into the hepatic hilum.

Endoscopy_UCTN_Code_TTT_1AS_2AD

Competing interests

The authors declare that they have no conflict of interest.

The authors

Takeshi Ogura, Masanori Yamada, Tadahiro Yamada, Saori Ueno, Kazuhide Higuchi
2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan

Corresponding author

Takeshi Ogura, MD
2nd Department of Internal Medicine, Osaka Medical College, 2-7 Daigakuchou, Takatsukishi, Osaka 569-8686, Japan
Fax: +81-726846532
oguratakeshi0411@yahoo.co.jp

References


Bibliography

Endoscopy 2020; 52: E418–E419
DOI 10.1055/a-1149-8738
ISSN 0013-726X
published online 24.4.2020
© 2020, Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany