Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(03): 148-155
DOI: 10.1055/a-1161-7720
Original Article

Electrolyte measurement in goats: Comparison of 2 blood gas analyzers and evaluation of the preanalytical blood sample preparation on measurement results

Elektrolytbestimmungen bei Ziegen: Vergleich von 2 Analysegeräten und Untersuchung des Einflusses der Blutprobenart auf die Messergebnisse
Daniela Luethy
Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
,
Klaus Hopster
› Author Affiliations

Zusammenfassung

Ziel 1) Vergleich zwischen einem mobilen, vollautomatischen Elektrolyt-Blutgasanalysegerät (Abaxis VetScan i-STAT 1) (POC) und einem stationären Elektrolyt-Blutgasanalysegerät (Opti CCA-TS2) (VBG) hinsichtlich ihrer Übereinstimmung bei Elektrolytmessungen bei Ziegen und 2) Evaluierung der Auswirkung des Probentyps auf die von beiden Analysegeräten gemessenen Elektrolytkonzentrationen.

Material und Methoden Bei insgesamt 30 Ziegen (21 Patienten und 9 Versuchstiere) wurden Blutproben entnommen und in heparinhaltigen Röhrchen (33 IE/2 ml Natrium-Heparin) (TUBE) und einer heparinisierten Spritze (430 IE/ml Natrium-Heparin) (SYRINGE) gesammelt. Die Proben wurden mittels POC und VBG analysiert und unter Verwendung einer Bland-Altman-Analyse und Pearson-Korrelation verglichen. Der Vergleich zwischen den verschiedenen Probentypen erfolgte unter Verwendung einer ANOVA.

Ergebnisse Im Vergleich zwischen den Analysegeräten ergab sich für die Natriumkonzentrationen (Na) ein Bias (95 % Limits of Agreement) von 0,07 mmol/l (–4,37 bis 4,52) für TUBE und –6,13 mmol/l (–11,04 bis 1,22) für SYRINGE. Kaliumkonzentrationen (K) zeigten ein Bias von 0,09 mmol/l (–0,5 bis 0,67) und 0,08 mmol/l (–0,4 bis 0,56) für TUBE bzw. SYRINGE. Bei den Konzentrationen an ionisiertem Kalzium (iCa) wurde ein Bias von 0,05 mmol/l (0,01 bis 0,1) bzw. –0,02 mmol/l (–0,18 bis 0,14) für TUBE bzw. SYRINGE ermittelt.

Der Vergleich der unterschiedlichen Probentypen ergab für den POC ein Bias für Na von 5,13 mmol/l (0,18–10,09), für K von 0,04 mmol/l (–0,12 bis 0,2) und für iCa von 0,4 mmol/l (0,12–0,68).

Schlussfolgerung und klinische Relevanz Der POC zeigte im Vergleich zum VBG eine klinisch vernachlässigbare Verzerrung der Ergebnisse der Elektrolytanalyse. Beim ionisierten Kalzium fanden sich Unterschiede zwischen den Probentypen, was auf einen Effekt der Heparinkonzentration auf iCa hinweist.

Abstract

Objective 1) To evaluate agreement for electrolyte measurements in goats between a handheld point-of-care analyzer (Abaxis VetScan i-STAT 1) (POC) and a benchtop blood gas analyzer (Opti CCA-TS2) (VBG) and 2) to evaluate effect of sample type on electrolytes values reported by both analyzers.

Material and methods In 21 hospitalized caprine patients and 9 healthy research goats, blood samples were collected into heparin-containing tubes (Sodium Heparin 33 IU/2 ml) (TUBE) and a heparinized syringe (Sodium Heparin 430 IU/ml) (SYRINGE). Samples were analyzed using a POC analyzer as well as VBG. Analyzer results were compared using Bland-Altman analysis and Pearson correlation. Comparison between samples was performed using repeated measures ANOVA.

Results Between analyzers, TUBE yielded a bias (95 % limits of agreement) of 0.07 mmol/l (–4.37 to 4.52) for sodium, while SYRINGE yielded a bias of –6.13 mmol/l (–11.04 to –1.22). Comparison of potassium yielded a bias of 0.09 mmol/l (–0.5 to 0.67) and 0.08 mmol/l (–0.4 to 0.56) for TUBE and SYRINGE, respectively. Comparison of ionized calcium showed a bias of 0.05 mmol/l (0.01–0.1) and –0.02 mmol/l (–0.18 to 0.14) for TUBE and SYRINGE, respectively. Between sample types, the POC yielded a bias of 5.13 mmol/l (0.18–10.09) for sodium, 0.04 mmol/l (–0.12 to 0.2) for potassium, and 0.40 mmol/l (0.12–0.68) for ionized calcium.

Conclusion and clinical relevance The POC exhibited clinically negligible bias for electrolyte analysis as compared to VBG. Ionized calcium concentrations were lower in self-prepared heparinized syringes than in heparin-containing tubes, suggesting an effect of heparin concentration on ionized calcium.



Publication History

Received: 13 February 2020

Accepted: 07 April 2020

Article published online:
18 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Holson LM. The Year of the Goat [Internet]. The New York Times. 2017 Available from: https://www.nytimes.com/2017/07/27/style/the-year-of-the-goat.html
  • 2 Riedi AK, Knubben-Schweizer G, Meylan M. Clinical findings and diagnostic procedures in 270 small ruminants with obstructive urolithiasis. J Vet Intern Med 2018; 32: 1274-1282
  • 3 Vasava PR, Jani RG, Goswami H V. et al. Studies on clinical signs and biochemical alteration in pregnancy toxemic goats. Vet World 2016; 9: 869-874
  • 4 Jacobs E, Vadasdi E, Sarkozi L. et al. Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals. Clin Chem 1993; 39: 1069-1074
  • 5 Erickson KA, Wilding P. Evaluation of a novel point-of-care system, the i-STAT Portable Clinical Analyzer. Clin Chem 1993; 39: 283-287
  • 6 Tinkey P, Lembo T, Craig S. et al. Use of the i-STAT portable clinical analyzer in mice. Lab Anim (NY) 2006; 35: 45-50
  • 7 Grosenbaugh DA, Gadawski JE, Muir WW. Evaluation of a portable clinical analyzer in a veterinary hospital setting. J Am Vet Med Assoc 1998; 213: 691-694
  • 8 Looney AL, Ludders J, Erb HN. et al. Use of a handheld device for analysis of blood electrolyte concentrations and blood gas partial pressures in dogs and horses. J Am Vet Med Assoc 1998; 213: 526-530
  • 9 Peiró JR, Borges AS, Gonçalves RC. et al. Evaluation of a portable clinical analyzer for the determination of blood gas partial pressures, electrolyte concentrations, and hematocrit in venous blood samples collected from cattle, horses, and sheep. Am J Vet Res 2010; 71: 515-521
  • 10 Neves RC, Stokol T, Bach KD. et al. Method comparison and validation of a prototype device for measurement of ionized calcium concentrations cow-side against a point-of-care instrument and a benchtop blood-gas analyzer reference method. J Dairy Sci 2018; 101: 1334-1343
  • 11 Tarbert DK, Behling-Kelly E, Priest H. et al. Evaluation of the i-stat portable clinical analyzer for measurement of ionized calcium and selected blood chemistry values in asian elephants (elephas maximus). J Zoo Wildl Med 2017; 48: 319-327
  • 12 Landt M, Hortin GL, Smith CH. et al. Interference in ionized calcium measurements by heparin salts. Clin Chem 1994; 40: 565-570
  • 13 Hopper K, Rezende ML, Haskins SC. Assessment of the effect of dilution of blood samples with sodium heparin on blood gas, electrolyte, and lactate measurements in dogs. Am J Vet Res 2005; 66: 656-660
  • 14 Tappin S, Rizzo F, Dodkin S. et al. Measurement of ionized calcium in canine blood samples collected in prefilled and self-filled heparinized syringes using the i-STAT point-of-care analyzer. Vet Clin Pathol 2008; 37: 66-72
  • 15 Küme T, Şişman AR, Solak A. et al. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Biochem Medica 2012; 22: 189-201
  • 16 Hedberg P, Majava A, Kiviluoma K. et al. Potential preanalytical errors in whole-blood analysis: Effect of syringe sample volume on blood gas, electrolyte and lactate values. Scand J Clin Lab Invest 2009; 69: 585-591
  • 17 Feyles F, Mussa A, Peiretti V. et al. Iatrogenic acute pancreatitis due to hypercalcemia in a child with pseudohypoparathyroidism. J Pediatr Endocrinol Metab 2014; 27: 149-152
  • 18 Sim MT, Stevenson FT. A fatal case of iatrogenic hypercalcemia after calcium channel blocker overdose. J Med Toxicol 2008; 4: 25-29
  • 19 Linnet K. Estimation of the linear relationship between the measurements of two methods with proportional errors. Stat Med 1990; 9: 1463-1473
  • 20 Yildirim E, Karapinar T, Hayirli A. Reliability of the i-STAT for the determination of blood electrolyte (K+, Na+, and CI-) concentrations in cattle. J Vet Intern Med 2015; 29: 388-394
  • 21 Aguilera-Tejero E. Calcium homeostasis and derangements. In: Fielding CL, Magdesian KG. eds. Equine Fluid Therapy. 1st ed.. Ames, Iowa: John Wiley & Sons; 2015: 55-75
  • 22 Rosol TJ, Chew DJ, Nagode LA. et al. Pathophysiology of Calcium Metabolism. Vet Clin Pathol 1995; 24: 49-56