Nuklearmedizin 2020; 59(05): 356-364
DOI: 10.1055/a-1177-9728
Original Article

Impact of FDG-PET on therapy management and outcome of differentiated thyroid carcinoma patients with elevated thyroglobulin despite negative iodine scintigraphy

Die Bedeutung der FDG-PET für das Therapiemanagement und Outcome von Patienten mit differenziertem Schilddrüsenkarzinom und negativer Iodszintigrafie
Marie Carolin Schleupner
1   University of Münster Faculty of Medicine, Münster, Nordrhein-Westfalen, Germany
,
Burkhard Riemann
2   University Hospital Münster, Nuclear Medicine, Albert-Schweizer-Campus 1, Münster, Germany
,
Michael Schäfers
2   University Hospital Münster, Nuclear Medicine, Albert-Schweizer-Campus 1, Münster, Germany
,
Philipp Backhaus
2   University Hospital Münster, Nuclear Medicine, Albert-Schweizer-Campus 1, Münster, Germany
,
Alexis Vrachimis
2   University Hospital Münster, Nuclear Medicine, Albert-Schweizer-Campus 1, Münster, Germany
3   Current address: Department of Nuclear Medicine, German Oncology Center, University Hospital of the European University, Limassol, Cyprus
› Author Affiliations

Abstract

Aim The objective of this study was to assess the impact of implementing FDG-PET imaging in treatment algorithms for differentiated thyroid cancer with suspected recurrence. Primary end points were overall, event-free and disease-specific survival. Secondary end points were therapies, disease control and the sensitivity and specificity of PET imaging.

Methods 194 patients with DTC treated at our center from 1996 to 2014 following thyroidectomy and routine 131I ablation with no remaining 131I uptake in whole-body scans but persisting or rising thyroglobulin values were enrolled in this retrospective analysis. Of these, 149 (76.8 %) received an 18F-FDG scan (PET group) whereas the remaining 45 patients (23.2 %) did not (non-PET group). Survival, disease-specific characteristics at inclusion, disease control and therapies were compared.

Results Patients of the PET group generally showed characteristics associated with higher disease activity from inclusion onwards. This did not translate to statistically significant differences in survival. If PET imaging was performed following inclusion, patients received significantly less radioiodine treatments during the first nine months after inclusion (63.1 % of the PET-group vs 82.2 % of the non-PET group). Simultaneously, patients tended to receive more surgeries following PET imaging (27.5 % PET-group vs 13.3 % non-PET group). No significant differences regarding disease control were observed.

Conclusion The early use of FDG-PET imaging in cases of suspected recurrence or existence of dedifferentiated DTC can lead to changes in therapy management, specifically identifying patients unlikely to benefit from additional radioiodine therapy who would instead qualify for surgical therapy methods.

Zusammenfassung

Ziel Ziel dieser Studie war, die Auswirkung der FDG-PET(/CT)-Bildgebung bei der Behandlung des differenzierten Schilddrüsenkarzinoms bei Rezidivverdacht zu analysieren. Primäre Endpunkte waren Gesamt-, ereignisfreies und krankheitsspezifisches Überleben. Sekundäre Endpunkte waren biochemisches Therapieansprechen, Therapien und Sensitivität sowie Spezifität des PET(/CT).

Methoden In die Studie wurden 194 Patienten eingeschlossen, die in unserer Klinik von 1996 bis 2014 im Anschluss an die Thyreoidektomie und ablative 131I-Radioiodtherapie behandelt wurden und trotz negativer Iodszintigraphien persistierende oder steigende Thyreoglobulinspiegel aufwiesen. Davon erhielten 149 (76,8 %) eine 18F-FDG-Bildgebung (PET-Gruppe), die anderen 45 Patienten (23,2 %) bildeten die non-PET-Gruppe. Die Gruppen wurden im Hinblick auf Überlebenszeiten, Patientencharakteristika bei Inklusion, biochemisches Therapieansprechen und Therapien verglichen.

Ergebnisse Patienten der PET-Gruppe wiesen generell ab Inklusion mehr Merkmale auf, die mit einer höheren Krankheitslast einhergehen. Dies resultierte nicht in statistisch signifikanten Unterschieden der Überlebenszeiten. Wurde eine PET(/CT)-Bildgebung durchgeführt, erhielten die Patienten signifikant weniger Radioiodtherapien in den ersten 9 Monaten nach Inklusion (63,1 % PET; 82,2 % non-PET). Gleichzeitig wurden tendenziell mehr Patienten operative Therapien zugeführt (27,5 % PET; 13,3 % non-PET). Das biochemische Therapieansprechen unterschied sich nicht signifikant.

Zusammenfassung Der frühe Einsatz der PET(/CT)-Bildgebung bei Rezidivverdacht des differenzierten Schilddrüsenkarzinoms kann den Behandlungspfad verändern, indem diejenigen Patienten identifiziert werden, die von weiteren RIT wahrscheinlich nicht profitieren und stattdessen operativen Therapien zugeführt werden können.



Publication History

Received: 17 March 2020

Accepted: 12 May 2020

Article published online:
15 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Bannas P, Derlin T, Groth M. et al Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan?. Ann Nucl Med 2012; 26 (01) 77-85 . doi:10.1007/s12149-011-0545-4
  • 2 Ciarallo A, Marcus C, Taghipour M. et al Value of Fluorodeoxyglucose PET/Computed Tomography Patient Management and Outcomes in Thyroid Cancer. PET Clin 2015; 10 (02) 265-278 . doi:10.1016/j.cpet.2014.12.009
  • 3 Deandreis D, Al Ghuzlan A, Leboulleux S. et al Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome?. Endocr Relat Cancer 2011; 18 (01) 159-169 . doi:10.1677/ERC-10-0233
  • 4 Doner RK, Sager S, Gortan FA. et al What is the role of florine-18 fluorodeoxyglucose/positron emission tomography/computed tomography imaging in well-differentiated thyroid cancers with negative iodine-131 scan high thyroglobulin and normal anti-thyroglobulin levels. J Cancer Res Ther 2016; 12 (02) 1010-1017 . doi:10.4103/0973-1482.176412
  • 5 Dong MJ, Liu ZF, Zhao K. et al Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun 2009; 30 (08) 639-650 . doi:10.1097/MNM.0b013e32832dcfa7
  • 6 Feine U, Lietzenmayer R, Hanke JP. et al Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996; 37 (09) 1468-1472
  • 7 Finkelstein SE, Grigsby PW, Siegel BA. et al Combined [18F]Fluorodeoxyglucose positron emission tomography and computed tomography (FDG-PET/CT) for detection of recurrent, 131I-negative thyroid cancer. Ann Surg Oncol 2008; 15 (01) 286-292 . doi:10.1245/s10434-007-9611-5
  • 8 Franzius C, Dietlein M, Biermann M. et al Procedure guideline for radioiodine therapy and 131iodine whole-body scintigraphy in paediatric patients with differentiated thyroid cancer. Nuklearmedizin 2007; 46 (05) 224-231 . doi:07050224
  • 9 Giovanella L, Ceriani L, De Palma D. et al Relationship between serum thyroglobulin and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck 2012; 34 (05) 626-631 . doi:10.1002/hed.21791
  • 10 Haslerud T, Brauckhoff K, Reisaeter L. et al F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis. Acta Radiol 2016; 57 (10) 1193-1200 . doi:10.1177/0284185115594645
  • 11 Haugen BR. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed?. Cancer 2017; 123 (03) 372-381 . doi:10.1002/cncr.30360
  • 12 Haugen BR, Sawka AM, Alexander EK. et al American Thyroid Association Guidelines on the Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force Review and Recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid 2017; 27 (04) 481-483 . doi:10.1089/thy.2016.0628
  • 13 Hong CM, Ahn BC, Jeong SY. et al Distant metastatic lesions in patients with differentiated thyroid carcinoma. Clinical implications of radioiodine and FDG uptake. Nuklearmedizin 2013; 52 (04) 121-129 . doi:10.3413/Nukmed-0541-12-11
  • 14 Kang JH, Jung DW, Pak KJ. et al Prognostic implication of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in patients with recurrent papillary thyroid cancer. Head Neck 2018; 40 (01) 94-102 . doi:10.1002/hed.24967
  • 15 Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association 1958; 53 (282) 457-481 . doi:10.1080/01621459.1958.10501452
  • 16 Kim S, Chung JK, Min HS. et al Expression patterns of glucose transporter-1 gene and thyroid specific genes in human papillary thyroid carcinoma. Nucl Med Mol Imaging 2014; 48 (02) 91-97 . doi:10.1007/s13139-013-0249-x
  • 17 Leboulleux S, Schroeder PR, Schlumberger M. et al The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers. Nat Clin Pract Endocrinol Metab 2007; 3 (02) 112-121 . doi:ncpendmet0402
  • 18 Lee JW, Lee SM, Lee DH. et al Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate-to-high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients. J Nucl Med 2013; 54 (08) 1230-1236 . doi:10.2967/jnumed.112.11711
  • 19 Marcus C, Antoniou A, Rahmim A. et al Fluorodeoxyglucose positron emission tomography/computerized tomography in differentiated thyroid cancer management: Importance of clinical justification and value in predicting survival. J Med Imaging Radiat Oncol 2015; 59 (03) 281-288 . doi:10.1111/1754-9485.12286
  • 20 Na SJ, Yoo I. et al Diagnostic accuracy of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in differentiated thyroid cancer patients with elevated thyroglobulin and negative (131)I whole body scan: evaluation by thyroglobulin level. Ann Nucl Med 2012; 26 (01) 26-34 . doi:10.1007/s12149-011-0536-5
  • 21 Ozdemir E, Yildirim Poyraz N. et al Diagnostic value of 18F-FDG PET/CT in patients with TENIS syndrome: correlation with thyroglobulin levels. Ann Nucl Med 2014; 28 (03) 241-247 . doi:10.1007/s12149-013-0801-x
  • 22 Pachon-Garrudo VM, Cuenca-Cuenca JI, Ruiz-Franco-Baux J. et al Value of the negative PET-FDG in the middle term follow-up of differentiated thyroid cancer in patients with negative 131 I-Na scan and elevated thyroglobulin serum levels. Rev Esp Med Nucl Imagen Mol 2012; 31 (06) 315-321 . doi:10.1016/j.remn.2011.12.002
  • 23 Palmedo H, Bucerius J, Joe A. et al Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006; 47 (04) 616-624 . doi:47/4/616
  • 24 Ranade R, Kand P, Basu S. Value of 18F-FDG PET negativity and Tg suppressibility as markers of prognosis in patients with elevated Tg and 131I-negative differentiated thyroid carcinoma (TENIS syndrome). Nucl Med Commun 2015; 36 (10) 1014-1020 . doi:10.1097/MNM.0000000000000350
  • 25 Robbins RJ, Wan Q, Grewal RK. et al Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006; 91 (02) 498-505 . doi:jc.2005-1534
  • 26 Zentrum für Krebsregisterdaten/Robert-Koch-Institut. Datenbankabfrage Schilddrüsenkrebs, ICD-10 C73 (06.12.2017). Im Internet (Stand 16.02.2020): https://www.krebsdaten.de/Krebs/DE/Content/Krebsarten/Schilddruesenkrebs/schilddruesenkrebs_node.html
  • 27 Rosenbaum-Krumme SJ, Gorges R, Bockisch A. et al (18)F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging 2012; 39 (09) 1373-1380 . doi:10.1007/s00259-012-2065-4
  • 28 Ruhlmann M, Binse I, Bockisch A. et al Initial [18F]FDG PET/CT in high-risk DTC patients. A three-year follow-up. Nuklearmedizin 2016; 55 (03) 99-103 . doi:10.3413/Nukmed-0766-15-09
  • 29 Salvatore B, Klain M, Nicolai E. et al Prognostic role of FDG PET/CT in patients with differentiated thyroid cancer treated with 131-iodine empiric therapy. Medicine (Baltimore) 2017; 96 (42) e8344 . doi:10.1097/MD.0000000000008344
  • 30 Treglia G, Annunziata S, Muoio B. et al The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int J Endocrinol 2013; 856189 DOI: 10.1155/2013/856189.
  • 31 Vural GU, Akkas BE, Ercakmak N. et al Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative 131I whole-body scan and elevated thyroglobulin levels: correlation with clinical and histopathologic characteristics and long-term follow-up data. Clin Nucl Med 2012; 3 (10) 953-959 . doi:10.1097/RLU.0b013e31825b2057
  • 32 Wiebel JL, Esfandiari NH, Papaleontiou M. et al Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer. Thyroid 2015; 25 (09) 1026-1032 . doi:10.1089/thy.2015.0062
  • 33 Yoshio K, Sato S, Okumura Y. et al The local efficacy of I-131 for F-18 FDG PET positive lesions in patients with recurrent or metastatic thyroid carcinomas. Clin Nucl Med 2011; 36 (02) 113-117 . doi:10.1097/RLU.0b013e318203bb6c
  • 34 Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3 (01) 32-35
  • 35 Zoller M, Kohlfuerst S, Igerc I. et al Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality?. Eur J Nucl Med Mol Imaging 2007; 34 (04) 487-495 . doi:10.1007/s00259-006-0276-2