Der Klinikarzt 2020; 49(06): 250-255
DOI: 10.1055/a-1178-8934
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Machine Learning and Learning Machines: KI in der Aus- und Weiterbildung

Welche Möglichkeiten und Notwendigkeiten ergeben sich?
Eleni Amelia Felińska
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg
,
Martin Wagner
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg
,
Beat Peter Müller-Stich
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg
,
Felix Nickel
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
29 June 2020 (online)

ZUSAMMENFASSUNG

Die Künstliche Intelligenz (KI) geht Hand in Hand mit der Digitalisierung der chirurgischen Aus- und Weiterbildung und wird in der Zukunft immer mehr an Bedeutung gewinnen. Die Anforderungen an KI in der chirurgischen Aus- und Weiterbildung sind vielfältig – genauso vielfältig sind ihre Einsatzmöglichkeiten. KI wird zunehmend im chirurgischen Curriculum berücksichtigt, auch wenn sie manchmal nicht auf den ersten Blick erkennbar ist und durch ihre Algorithmen eher im Hintergrund agiert. Die modernen digitalen Lehrmethoden und Sensortechnik eröffnen neue Wege für die Einbindung der KI in die chirurgische Aus- und Weiterbildung. Die ersten Schritte sind bereits implementiert – KI unterstützt die Erstellung von digitalem Bildmaterial zu Lehrzwecken oder erfasst mithilfe von Sensortechnik die chirurgische Leistung, um diese zu analysieren. Diverse Virtual- und Augmented-Reality-Simulatoren werden nicht nur als effektive Trainingswerkzeuge genutzt, sondern stellen vielmehr wertvolle Quellen für chirurgische Daten dar. All dies birgt enormes Potenzial für neue Erkenntnisse im Bereich der Lehrforschung, was zur Entwicklung von hocheffektiven und evidenzbasierten Lehrkonzepten beiträgt.

 
  • Literatur

  • 1 Romero P, Gunther P, Kowalewski KF. et al Halsted’s “See One, Do One, and Teach One” versus Peyton’s Four-Step Approach: A Randomized Trial for Training of Laparoscopic Suturing and Knot Tying. J Surg Educ 2018; 75: 510-515
  • 2 Hinds PJ. The curse of expertise: The effects of expertise and debiasing methods on prediction of novice performance. Journal of Experimental Psychology: Applied 1999; 5: 205-221
  • 3 Patterson RE, Pierce BJ, Bell HH. et al Implicit Learning, Tacit Knowledge, Expertise Development, and Naturalistic Decision Making. Journal of Cognitive Engineering and Decision Making 2010; 4: 289-303
  • 4 Hashimoto DA, Rosman G, Rus D. et al Artificial Intelligence in Surgery: Promises and Perils. Ann Surg 2018; 268: 70-76
  • 5 Hashimoto DA, Rosman G, Rus D. et al Surgical Video in the Age of Big Data. Ann Surg 2018; 268: e47-e48
  • 6 Natarajan P, Frenzel JC, Smaltz DH. Demystifying big data and machine learning for healthcare: CRC Press. 2017
  • 7 Frasier LL, Azari DP, Ma Y. et al A marker-less technique for measuring kinematics in the operating room. Surgery 2016; 160: 1400-1413
  • 8 Rojas-Muñoz E, Cabrera ME, Lin C. et al The System for Telementoring with Augmented Reality (STAR): A head-mounted display to improve surgical coaching and confidence in remote areas. Surgery 2020; 167: 724-731
  • 9 Jayachandran Preetha C, Kloss J, Wehrtmann F. et al Towards Augmented Reality-based Suturing in Monocular Laparoscopic Training. 2020
  • 10 Jung JJ, Elfassy J, Grantcharov T. Factors associated with surgeon’s perception of distraction in the operating room. Surg Endosc 2019 doi:10.1007/s00464-019-07088-z. doi:10.1007/s00464-019-07088-z
  • 11 Jung JJ, Juni P, Lebovic G. et al First-year Analysis of the Operating Room Black Box Study. Ann Surg 2020; 271: 122-127
  • 12 Fecso AB, Kuzulugil SS, Babaoglu C. et al Relationship between intraoperative non-technical performance and technical events in bariatric surgery. Br J Surg 2018; 105: 1044-1050
  • 13 van Dalen A, Legemaate J, Schlack WS. et al Legal perspectives on black box recording devices in the operating environment. Br J Surg 2019; 106: 1433-1441
  • 14 Curtis NJ, Dennison G, Brown CSB. et al Clinical Evaluation of Intraoperative Near Misses in Laparoscopic Rectal Cancer Surgery. Ann Surg 2019 doi:10.1097/sla.0000000000003452. doi:10.1097/sla.0000000000003452
  • 15 Limbu BH, Jarodzka H, Klemke R. et al Using sensors and augmented reality to train apprentices using recorded expert performance: A systematic literature review. Educational Research Review 2018; 25: 1-22 doi:10.1016/j.edurev.2018.07.001
  • 16 Erridge S, Yeung DKT, Patel HRH. et al Telementoring of Surgeons: A Systematic Review. Surgical Innovation 2019; 26: 95-111 doi:10.1177/1553350618813250
  • 17 Panait L, Rafiq A, Tomulescu V. et al Telementoring versus on-site mentoring in virtual reality-based surgical training. Surg Endosc 2006; 20: 113-118
  • 18 Bilgic E, Turkdogan S, Watanabe Y. et al Effectiveness of Telementoring in Surgery Compared With On-site Mentoring: A Systematic Review. Surgical Innovation 2017 doi:10.1177/1553350617708725: 155335061770872. doi:10.1177/1553350617708725
  • 19 Bolger JC, Broe MP, Zarog MA. et al Initial experience with a dual-console robotic-assisted platform for training in colorectal surgery. Tech Coloproctol 2017; 21: 721-727
  • 20 Greenfield MJ, Luck J, Billingsley ML. et al Demonstration of the Effectiveness of Augmented Reality Telesurgery in Complex Hand Reconstruction in Gaza. Plast Reconstr Surg Glob Open 2018; 6: e1708
  • 21 Schmidt MW, Kowalewski KF, Schmidt ML. et al The Heidelberg VR Score: development and validation of a composite score for laparoscopic virtual reality training. Surg Endosc 2019; 33: 2093-2103
  • 22 Luengo I, Flouty E, Giataganas P. et al Surreal: Enhancing Surgical simulation Realism using style transfer. 2018
  • 23 Kowalewski KF, Minassian A, Hendrie JD. et al One or two trainees per workplace for laparoscopic surgery training courses: results from a randomized controlled trial. Surg Endosc 2018 doi:10.1007/s00464-018-6440-5. doi:10.1007/s00464-018-6440-5
  • 24 Kowalewski KF, Garrow CR, Proctor T. et al LapTrain: multi-modality training curriculum for laparoscopic cholecystectomy-results of a randomized controlled trial. Surg Endosc 2018; 32: 3830-3838
  • 25 Friedrich M, Kowalewski KF, Proctor T. et al Study protocol for a randomized controlled trial on a multimodal training curriculum for laparoscopic cholecystectomy – LapTrain. Int J Surg Protoc 2017; 5: 11-14
  • 26 Kowalewski K-F, Hendrie JD, Schmidt MW. et al Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc 2016; 31: 2155-2165
  • 27 Makary MA, Daniel M. Medical error—the third leading cause of death in the US. Bmj 2016; 353: i2139
  • 28 Commission J. Improving patient and worker safety: opportunities for synergy, collaboration and innovation. Oakbrook Terrace, IL: The Joint Commission; 2012: 171
  • 29 Carpenter JE, Bagian JP, Snider RG. et al Medical Team Training Improves Team Performance: AOA Critical Issues. J Bone Joint Surg Am 2017; 99: 1604-1610
  • 30 Wakeman D, Langham MR. Creating a safer operating room: Groups, team dynamics and crew resource management principles. Seminars in Pediatric Surgery 2018; 27: 107-113
  • 31 Murphy M, Curtis K, McCloughen A. What is the impact of multidisciplinary team simulation training on team performance and efficiency of patient care? An integrative review. Australas Emerg Nurs J 2016; 19: 44-53
  • 32 Andreatta PB, Maslowski E, Petty S. et al Virtual reality triage training provides a viable solution for disaster-preparedness. Acad Emerg Med 2010; 17: 870-876
  • 33 Heinrichs WL, Youngblood P, Harter PM. et al Simulation for Team Training and Assessment: Case Studies of Online Training with Virtual Worlds. World J Surg 2008; 32: 161-170
  • 34 Stone RJ, Guest R, Mahoney P. et al A ‘mixed reality’ simulator concept for future Medical Emergency Response Team training. Journal of the Royal Army Medical Corps 2017; 163: 280-287
  • 35 Graafland M, Bemelman WA, Schijven MP. Game-based training improves the surgeon’s situational awareness in the operation room: a randomized controlled trial. Surg Endosc 2017; 31: 4093-4101
  • 36 Cowan B, Sabri H, Kapralos B. et al A serious game for off-pump coronary artery bypass surgery procedure training. Stud Health Technol Inform 2011; 163: 147-149
  • 37 Nickel F, Hendrie JD, Bruckner T. et al Successful learning of surgical liver anatomy in a computer-based teaching module. Int J Comput Assist Radiol Surg 2016; 11: 2295-2301
  • 38 Haubruck P, Nickel F, Ober J. et al Evaluation of App-Based Serious Gaming as a Training Method in Teaching Chest Tube Insertion to Medical Students: Randomized Controlled Trial. J Med Internet Res 2018; 20: e195
  • 39 Engelhardt S, Sharan L, Karck M. et al Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training. In Cham: Springer International Publishing; 2019: 155-163
  • 40 Graafland M, Schraagen JM, Schijven MP. Systematic review of serious games for medical education and surgical skills training. Br J Surg 2012; 99: 1322-1330
  • 41 Kenngott HG, Preukschas AA, Wagner M. et al Mobile, real-time, and point-of-care augmented reality is robust, accurate, and feasible: a prospective pilot study. Surg Endosc 2018; 32: 2958-2967
  • 42 Breuer K. Computerspiele programmieren: Künstliche Intelligenz für künstliche Gehirne: Oldenbourg Wissenschaftsverlag. 2012
  • 43 Kowalewski K-F, Garrow CR, Schmidt MW. et al Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying. Surg Endosc 2019 doi:10.1007/s00464-019-06667-4. doi:10.1007/s00464-019-06667-4
  • 44 Azari DP, Frasier LL, Quamme SRP. et al Modeling Surgical Technical Skill Using Expert Assessment for Automated Computer Rating. Ann Surg 2019; 269: 574-581
  • 45 Funke I, Bodenstedt S, Oehme F. et al Using 3 D Convolutional Neural Networks to Learn Spatiotemporal Features for Automatic Surgical Gesture Recognition in Video. 2019
  • 46 Baghdadi A, Hussein AA, Ahmed Y. et al A computer vision technique for automated assessment of surgical performance using surgeons’ console-feed videos. Int J Comput Assist Radiol Surg 2019; 14: 697-707
  • 47 Hung AJ, Chen J, Gill IS. Automated Performance Metrics and Machine Learning Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery. JAMA Surg 2018; 153: 770-771