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ZUSAMMENFASSUNG

Ziel Detektion der Röntgen-Thorax-Aufnahmeposition an-

hand von Convolutional Neural Networks zur Verbesserung

und Bereinigung von Metainformationen innerhalb der Daten-

infrastruktur eines Krankenhauses.

Material und Methoden Innerhalb dieser Studie wurde ein

Convolutional Neural Network entwickelt, das automatisch

die verwendete Anterior-posterior- bzw. Posterior-anterior-

Aufnahmeprojektion einer Röntgen-Thoraxaufnahme er-

kennt. Es wurden 2 unterschiedliche Netzwerkarchitekturen

(VGG Variante und ResNet-34) auf Basis von Daten der RSNA

(26 684 Röntgenaufnahmen, Klassenverteilung: 46% AP, 54%

PA) trainiert und anschließend auf einem zusammengestell-

ten hauseigenen Datensatz (Verwendung von manuellen La-

beln) aus dem Datenbestand des Universitätsklinikums Essen

(4507 Röntgenaufnahmen, Klassenverteilung: 55 % PA, 45 %

AP) getestet. Für eine bessere Nachvollziehbarkeit der getä-

tigten Vorhersagen der Modelle wurde zudem für jede Vor-

hersage eine Grad-CAM generiert. Die Resultate der Modelle

wurden anhand der Accuracy, der Area under the Curve

(AUC) und dem F1-Score berechnet auf Basis des Abgleichs

der manuellen Label. Abschließend wurde zudem die Gen-

auigkeit der Modellvorhersagen und der DICOM-Label anhand

des Vergleichs mit den manuellen Labeln berechnet.

Ergebnisse Die zusammengefassten Modelle erreichten Ac-

curacy- und F1-Score-Werte von mehr als 95 %. Alle Modelle

erreichten eine AUC von über 0,99. Die generierten Grad-

CAMSs zeigen, dass die Modelle relevante anatomische Refe-

renzpunkte für ihre Vorhersage nutzen, die auch ein Radio-

loge für eine Unterscheidung heranziehen würde. Zudem

zeigen die antrainierten Modelle die Fähigkeit zur Generali-

sierung, da diese auch falsch gekennzeichnete Röntgenbilder

richtig einordnen können, was durch den Vergleich der ma-

nuellen Label mit den jeweiligen Modellvorhersagen und den

DICOM-Labeln ersichtlich wurde.

Schlussfolgerung Die Resultate zeigen, dass falsch eingetra-

gene Metainformationen innerhalb der radiologischen Bildge-

bung effektiv durch den Einsatz von Deep Learning korrigiert

und somit die Datenqualität sowohl für die klinische Anwen-

dung als auch für die Forschung erhöht werden können.

Kernaussagen:
▪ Die trainierten Modelle erzielen akkurate Vorhersagen auf

externen Validierungsdaten.

▪ Die Netzwerke treffen ihre Vorhersagen basierend auf

anatomischen Strukturen und Referenzpunkten, die

mit dem menschlichen Fachwissen übereinstimmen.

▪ Die finalen Modelle konnten Label-Fehler in dem Testda-

tensatz finden.

ABSTRACT

Purpose Detection and validation of the chest X-ray view po-

sition with use of convolutional neural networks to improve

meta-information for data cleaning within a hospital data in-

frastructure.

Material and Methods Within this paper we developed a

convolutional neural network which automatically detects

the anteroposterior and posteroanterior view position of a

chest radiograph. We trained two different network architec-
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tures (VGG variant and ResNet-34) with data published by the

RSNA (26 684 radiographs, class distribution 46% AP, 54% PA)

and validated these on a self-compiled dataset with data from

the University Hospital Essen (4507, radiographs, class distri-

bution 55% PA, 45% AP) labeled by a human reader. For visua-

lization and better understanding of the network predictions,

a Grad-CAM was generated for each network decision. The

network results were evaluated based on the accuracy, the

area under the curve (AUC), and the F1-score against the hu-

man reader labels. Also a final performance comparison be-

tween model predictions and DICOM labels was performed.

Results The ensemble models reached accuracy and

F1-scores greater than 95 %. The AUC reaches more than

0.99 for the ensemble models. The Grad-CAMs provide in-

sight as to which anatomical structures contributed to a deci-

sion by the networks which are comparable with the ones a

radiologist would use. Furthermore, the trained models were

able to generalize over mislabeled examples, which was found

by comparing the human reader labels to the predicted labels

as well as the DICOM labels.

Conclusion The results show that certain incorrectly entered

meta-information of radiological images can be effectively

corrected by deep learning in order to increase data quality

in clinical application as well as in research.

Key Points:
▪ The predictions for both view positions are accurate with

respect to external validation data.

▪ The networks based their decisions on anatomical struc-

tures and key points that were in-line with prior knowledge

and human understanding.

▪ Final models were able to detect labeling errors within the

test dataset.

Citation Format
▪ Hosch R, Kroll L, Nensa F et al. Differentiation Between

Anteroposterior and Posteroanterior Chest X-Ray View

Position With Convolutional Neural Networks. Fortschr

Röntgenstr 2021; 193: 168–176

Introduction

The usage and importance of deep learning applications within
the radiological workflow is increasing. A majority of scientific re-
search is based on the aim of the automatic detection of diseases
on CT, MR or X-ray images via deep learning algorithms [1–3]. To
implement those kinds of algorithms researchers have to rely on
valid information including not only the image data itself but also
important metadata that are needed for the training and decision
process [4]. Metadata such as the view position of X-ray images
can play a key role for image interpretation by radiologists or a
diagnostic algorithm within an automated diagnostic pipeline
[5]. In the case of X-ray images, more than 1 billion radiological
imaging procedures are performed worldwide per year. One of
the most frequently performed examinations is chest X-ray [1,
6]. In general, we distinguish between the posteroanterior (PA)
and anteroposterior (AP) view position as shown in ▶ Fig. 1.

The correct distinction between these two positions is signifi-
cant because the view position can be decisive for image interpre-
tation [5]. For example, for patients with cardiomegaly or pneu-
mothorax, the PA position delivers more relevant information
than the AP position because of less geometric magnification of
anatomical structures such as the heart due to increased distance
to the detector [5]. This shows which impact meta information
like the view position can have within the radiological workflow.
Comparing the importance of correct meta information with the
potential room for error within the work routine shows that incor-
rect metadata can lead to billing errors, poor quality of research
data or worse, e. g., incorrect diagnoses and treatments [7].

The goal of the present study was to design and train a convo-
lutional neural network (CNN) to derive the correct view position
of chest X-rays from the imaging data itself and thus be able to
correct erroneously entered metadata.

Materials and Methods

Ethics Statement

This study was in compliance with the guidelines of the Institu-
tional Review Board of the University Hospital Essen – Approval
Number: 19-8916-BO. Due to the retrospective nature of the
study, written informed consent was waived by the Institutional
Review Board. The data were completely anonymized before
being included in the study.

Data

Within this study we used two different datasets for network
training and testing. For the training process we used the “Pneu-
monia Detection Challenge” data published by the Radiological
Society of North America (RSNA) [7]. The dataset contains
26 684 X-ray images in the size of 1024x1024 pixels including
46% in the AP class and 54% in the PA class. All images are grays-
cale and have a value quantization of 8 bit. Some of these images
include digital markers to indicate which X-ray position was used.
A statistical description of the RSNA dataset in regard to patient
age, gender, and view position is visualized in ▶ Fig. 2.

In addition to the presented training dataset above a self-com-
piled dataset was used to test the performance of the generated
models on independent data. This dataset is based on the picture
archiving and communication system (PACS) archive of the Uni-
versity Hospital Essen (in-house data). The data was compiled
using the procedure codes “KTH” and “KTHL”, which represents
the German in-house equivalent for PA and AP chest X-ray images.
From both view types 3000 of the newest X-rays within the PACS
were selected. Further selection criteria were that the necessary
digital imaging and communications in medicine (DICOM) tags
like the procedure code, series description, photometric interpre-
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tation, bits stored, patient age and patient sex contained valid in-
formation. Within the PA class we filtered all lateral X-rays based
on the view position code (LL) or the study description. In total,
this leads to a collected dataset of 4507 X-rays including 45% in
the AP and 55% in the PA class. Similarly to ▶ Fig. 2, the same sta-
tistics were computed for the in-house dataset, which are visualiz-
ed in ▶ Fig. 3.

Furthermore, all images within the test dataset are in grayscale
and contain a value quantization between 12 and 16 bit.

Methodology

All X-rays were classified according to the given procedure code
within the DICOM header which represent the following ground
truth labels: Class 1 for PA and class 2 for AP. Since this task is de-
fined as an image classification problem, suitable architectures
with promising results regarding the image classification domain
such as the VGG and the ResNet have been applied [8, 9]. The
VGG-like architecture was modified in order to ensure a competi-
tive receptive field in comparison to the utilized ResNet-34, as vis-
ualized in ▶ Fig. 4.

Both architectures use a repeating sequence of convolutional,
instance normalization [10] and ReLU [11] layers in their building
blocks (see ▶ Fig. 4 bottom) [8, 9]. After a defined number of con-
volutional blocks, the VGG uses max-pooling layers for the further
feature selection. Within our implementation of the VGG, the
competitive receptive field was ensured through an additional
max-pooling layer followed by three convolutional layers (512).
At the same time we removed the fully connected layers and re-
placed them with a global average pooling layer followed by a
1x1 convolution. For the ResNet implementation only the batch
normalization layers were replaced by instance normalization lay-
ers. Otherwise it starts with a 7 × 7 convolution followed by in-
stance normalization and a max pooling layer to reduce the spatial
dimensions of the input image [8, 9]. Subsequently, the data
flows through a repeating number of residual blocks which per-
form the identity mapping (purple blocks in ▶ Fig. 4 bottom) and
a down-sampling through a selected stride of 2 (orange blocks in
▶ Fig. 4 bottom).

The general difference between these architectures is the way
the information flows through the network and thus the subse-

▶ Fig. 2 Shows the distribution of the view position, the patients’ gender distribution and the patients’ age distribution based on the view position
in the RSNA data.

▶ Abb.2 Zeigt die Verteilung der Aufnahmeposition, des Geschlechts und die Altersverteilung basierend auf der Aufnahmeposition für die RSNA-Daten.

▶ Fig. 1 Visualization of exemplary radiographs from both view positions. The first row contains PA and the second AP radiographs.

▶ Abb.1 Visualisierung von beispielhaften Röntgen-Thoraxaufnahmen beider Aufnahmepositionen. Die erste Reihe beinhaltet PA- und die zweite
AP-Aufnahmen.
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quent error feedback. The VGG follows linear information flow
which harbors the danger of ‘vanishing gradient’ meaning that
the gradients can become so small that they cause stagnation in
the network’s optimization process [9]. To counteract this prob-
lem, the skip connections were introduced within the ResNet ar-
chitecture. These make it possible to merge information for a sin-
gle block – on the one hand from the output of a residual block
and on the other hand from the input of the previous block. These
connections, unlike the VGG, allow a different kind of error tracing
since they allow propagation of the error through the network
using less layers [8].

In this study, the global average pooling layers were applied in
order to reduce overfitting and at the same time to enable Grad-
CAM visualization [8, 9, 12, 13]. The Grad-CAM uses the gradient
information of the last convolutional layer to visualize the relevant
regions for a given classification. This helps to create a better un-
derstanding as to which anatomic regions on a given chest radio-
graph are decisive for the algorithm’s classification [13]. The
implemented visualization additionally allows comparison
between the algorithm’s and the physician’s region of interest,
giving interesting insight into the differences and similarities be-
tween human and algorithmic assessment of chest X-ray images
[5, 13]. The complete processing of an image, from preprocessing
to the visualization of the final prediction, is shown in ▶ Fig. 5.

Three image sizes were chosen for training: 128 × 128,
256 × 256 and 512× 512. With the different image sizes, we want
to validate if more image information leads to more accurate pre-
dictions and this results in three pre-processed datasets. Within
these datasets the images were analyzed for the presence of digi-
tal markers. Since these are represented by the maximum possible
value, it was possible to detect and through dilation merge the
relevant pixels into rectangular regions. The affected regions
were extracted and replaced by black patches covering the identi-
fied pixels (see ▶ Fig. 5 left). This image preprocessing prevents
the networks from using the markers as a possible feature for pre-
diction. The removal enables the opportunity to use the trained

networks on radiographs with or without markers. Next, the
cleaned images were normalized to the value range –1 to 1 as net-
work inputs. Additionally, the images were randomly augmented
by zooming (25 % in and out), horizontal flipping and cropping
(87.5 % of the image size) to ensure that the networks generalize
better by using slightly modified images and virtually increase the
dataset size (see ▶ Fig. 5middle) [14]. Subsequently, the pre-pro-
cessed images were fed into the network which resulted in
two outputs. On the one hand a probability vector, which indi-
cates the class for a given radiograph and on the other hand a
Grad-CAM which can be used as an overlay for the input image
to visualize the relevant regions for the classification (see ▶ Fig. 5
output).

The following hyperparameters were used for both networks.
A batch size of 16 was chosen and all models were trained for 30
epochs. For the optimization the Adam-optimizer was used with
the default parameters (lr = 0.001, beta1 = 0.9, beta2 = 0.999,
epsilon = 1e-07) [15]. In addition, a learning rate decay (every
10 epochs) was applied. As a loss function, the cross-entropy on
softmax activations was used [16]. For regularization purposes,
we used dropout with a probability of 0.5 between the global
average pooling layer and the final 1x1 convolution. All models
were trained using five-fold cross-validation with each fold con-
taining 5336 to 5337 images, which results in 1335 optimization
steps per epoch. All stand-alone models were then combined into
an ensemble model merging the individual predictions into a sin-
gle prediction based on the averaged probabilities from the soft-
max activation. In addition, a human reader labeled the in-house
data by hand which enables us to compare the network results to
those automatically derived as well as the human reader labels for
further evaluation. In addition, the in-house dataset size was
reduced by 13 since the human reader excluded those X-rays due
to bad quality.

For the evaluation the following metrics have been chosen.
First, the following four values were calculated: true positive
(TP), true negative (TN), false positive (FP) and false negative

▶ Fig. 3 Shows the distribution of the view position, the patients’ gender distribution and the patients’ age distribution based on the view position
within the in-house data.

▶ Abb.3 Zeigt die Verteilung der Aufnahmeposition, des Geschlechtes und die Altersverteilung basierend auf der Aufnahmeposition für die
hauseigenen Daten.
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(FN). These represent the extent to which a model has learned the
ability to classify a given sample into the correct class (TP and TN)
or into the false class (FP and FN) [17]. These values build the
foundation to calculate the accuracy and F1-score which repre-
sent the performance of a trained classifier [17]. Additionally, the
area under the curve (AUC) was used to evaluate the likelihood
that a given example is classified in the correct class which means
that a higher AUC indicates a better classifier regardless of the
prediction threshold [17].

Results

▶ Table 1 visualizes the averaged cross validation scores from the
RSNA validation splits as well as the test scores from the in-house
dataset for all stand-alone models including the standard deviation.

The results of the single models show that all models reach
near perfect results on the validation splits of the RSNA data. In
comparison, the results of the compiled in-house data show that
all models drop about 3–4 % in terms of accuracy and the
F1-score. In addition, the models tend to have more problems
with the classification of an AP than with a PA example which is
indicated through the higher number of FN. Besides the single
model scores, ▶ Table 2 visualizes the results of the ensemble
models for each model configuration.

▶ Fig. 4 Structural representation of the network architectures (top =VGG variant, bottom=ResNet-34) and their building blocks.

▶ Abb.4 Strukturelle Übersicht der verwendeten Netzwerkarchitekturen (oben = VGG-Variante, unten = ResNet) und der dazugehörigen Bausteine.
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The presented results in ▶ Table 2 show that all model config-
urations could improve their performance in all given metrics and
scores through the ensemble approach. The accuracy and
F1-score improved about 1 % and also the number of FP and
FN could be reduced. Based on the ensemble performance in
▶ Table 2, we compared the DICOM labels of the in-house dataset
with the ones from the human reader. This comparison results in
175 detected divergent labels between the in-house DICOM and
the human reader labels. We then used the ResNet (512 × 512)
model outputs as well as the DICOM labels as a prediction and
hold them against the human reader labels to see which approach
delivers better results (see ▶ Table 3).

The results in ▶ Table 3 indicate that the model and the human
reader have more common decisions on the samples within the
in-house dataset than the human reader and the DICOM labels re-
sulting in a slightly (about 1% to 1.5%) better performance using
the model predictions. Besides the numeric evaluation and inter-
pretation, ▶ Fig. 6 shows the Grad-CAM visualizations for both
classes including an averaged heatmap for each view position
and model within the ensemble.

The provided Grad-CAMs indicate that the network used im-
portant anatomical reference points such as the scapula, the
heart, the neck or ribs for the differentiation of the view positions.
Based on the visualized examples, we generated an averaged
heatmap for both view positions to provide a complete overview
of which anatomical parts were often used by the network when
declaring a decision. Those averaged Grad-CAMs show that the
networks learned and used heterogeneous features for their deci-
sions.

Discussion

The goal of the present study was to design and train a convolu-
tional neural network (CNN) to derive the correct view position of
chest X-rays from the imaging data itself and thus be able to cor-
rect erroneously entered metadata. The results for the F1-score
show that all networks are capable of a generalized distinction
between both view positions. In addition, the networks not only
learned important features, but also used those reference points
on which radiologists would base their decisions, like the scapula,
heart, ribs, collarbone and neck. However, it should be men-
tioned that there were slight differences between the trained
models in terms of performance. No model configuration could
reproduce the cross-validation scores from the RSNA dataset.
Furthermore, in the in-house dataset all scores drop between
2% and 3% in the ensemble models in comparison to the cross-
validation scores. After comparing the human reader labels
against the model predictions as well as the DICOM labels, it can
be stated that the models reach higher agreement with the hu-
man reader than the DICOM labels which is expressed through
fewer labeling errors.

In general, our study shows that deep learning can be an
option for automatic monitoring and, if necessary, correction
of incorrectly entered metadata in the radiological workflow. In
this way, deep learning can be used to prevent accounting errors,
poor quality research data or even incorrect diagnoses and treat-
ments.

In relation to this study, Rubin et al. showed that the view
position is decisive for deep learning-based disease detection
on X-ray images [18]. Parallel to our work, Kim et al. [19] pub-
lished a study on this topic. The experimental setup and the re-
sults are similar to our study. Comparing the results, it becomes
clear that both studies achieve approximately the same accura-

▶ Fig. 5 Visualization of the pre-processing pipeline for the image data and the network prediction.

▶ Abb.5 Visualisierung der verwendeten Vorverarbeitungschritte für die Bilddaten und die resultierende Netzwerkvorhersage.
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▶ Table 2 Test results of all ensemble mode configurations on the in-house dataset.

▶ Tab. 2 Testergebnisse aller Ensemble-Modelle auf den hauseigenen Daten.

Network Image Size TP FP TN FN Accuracy (%) F1-Score AUC

VGG 128 2070 23 2292 109 97.1 96.9 0.9949

256 2062 25 2290 117 96.8 96.7 0.9936

512 2040 21 2294 139 94.4 96.2 0.9947

ResNet 128 2015 20 2295 164 95.9 95.6 0.9937

256 2036 18 2297 143 96.4 96.2 0.9954

512 2062 20 2295 117 97.0 96.8 0.9945

▶ Table 1 Results of the single models with mean and standard deviation for the cross validation splits from the RSNA (top) and the test results on
the in-house dataset (bottom).

▶ Tab. 1 Resultate der einzelnen Modelle mit Mittelwert und Standardabweichung für die Kreuz-Validierungs-Splits der RSNA-Daten (oben) und der
Testergebnisse auf den hauseigenen Daten (unten).

Data Network Image
Size

TP FP TN FN Accuracy (%) F1-Score (%) AUC

RSNA (CV) VGG 128 2413 ± 39 16 ± 5 2885 ± 32 21 ± 3 99.3 ± 0.2 99.2 ± 0.2 0.9972 ± 0.0003

256 2412 ± 42 13 ± 3 2888 ± 40 22 ± 5 99.3 ± 0.0 99.3 ± 0.1 0.9982 ± 0.0006

512 2416 ± 39 14 ± 3 2888 ± 36 18 ± 3 99.4 ± 0.1 99.3 ± 0.1 0.9981 ± 0.0005

ResNet 128 2414 ± 35 18 ± 4 2884 ± 34 20 ± 8 99.3 ± 0.1 99.2 ± 0.1 0.9980 ± 0.0009

256 2414 ± 39 11 ± 2 2890 ± 38 20 ± 4 99.4 ± 0.0 99.3 ± 0.0 0.9982 ± 0.0006

512 2416 ± 34 14 ± 5 2888 ± 33 18 ± 7 99.4 ± 0.1 99.3 ± 0.1 0.9982 ± 0.0008

in-house VGG 128 2041 ± 24 26 ± 3 2289 ± 3 238 ± 24 96.4 ± 0.5 96.1 ± 0.7 0.9925 ± 0.0018

256 2031 ± 31 27 ± 5 2288 ± 5 148 ± 31 96.1 ± 0.6 95.9 ± 0.7 0.9925 ± 0.0007

512 1996 ± 46 24 ± 4 2291 ± 4 183 ± 46 95.4 ± 0.9 95.1 ± 1.1 0.9931 ± 0.0010

ResNet 128 1956 ± 86 21 ± 4 2294 ± 4 223 ± 86 94.6 ± 1.8 94.1 ± 2.0 0.9924 ± 0.0007

256 2006 ± 65 20 ± 5 2295 ± 5 173 ± 65 95.7 ± 1.4 95.4 ± 1.5 0.9942 ± 0.0004

512 2026 ± 59 21 ± 7 2294 ± 7 159 ± 59 96.1 ± 1.2 95.8 ± 1.3 0.9938 ± 0.0005

▶ Table 3 Comparison of the 512 × 512 ensemble ResNet results with the in-house procedure code and human reader labels.

▶ Tab. 3 Vergleich der ResNet (512 × 512) -Ensemble-Ergebnisse mit dem hauseigenen Procedure Code und den menschlichen Labeln.

TP FP TN FN Accuracy (%) F1-score

Human Reader vs. Procedure Codes 2005 1 2314 174 96.1 95.8

Human Reader vs. ResNet (512 × 512) 2062 20 2295 117 96.9 96.7
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cies within the training data. This is not surprising since the RSNA
dataset used in this study is based on the NIH dataset [7]. Also
both studies reach high accuracy and AUC rates on self-compiled
test data. One main difference is that the CNNs created in our
work are not only validated on labeled images, but also through
manual examination from a human reader. Those results show
that the trained networks are capable of detecting labeling er-
rors within the data storage with high accuracy. More differences
are that we used a 4 times larger external test dataset and eval-
uated not only single models but also ensemble models. Also
within our preprocessing pipeline, all digital markers within a
radiograph were removed, hence the potential usage as a fea-
ture. All models were trained from scratch without using pre-
trained models from the natural imaging domain. This enables
the usage of grayscale image inputs instead of artificially created
RGB images. Overall, both studies show and prove the potential
of deep learning for the validation of meta information within
the clinical routine [19].

In addition to the results and related studies, the limitations of
our study must also be considered. First, the use of an external da-

taset for the training of the networks can be regarded as a limita-
tion. For further studies it would be useful to compile a training
dataset completely from in-house data in order to better control
the data quality itself and also the accessible meta information. In
addition, it can be stated that the training and test quantity was
sufficient, but for further and better generalization an increase in
both should be considered. Another limitation of our study is due
to the fact that only the PA/AP view was considered. From a clini-
cal point of view, the PA/AP view can be complemented by the lat-
eral view position. Based on the training dataset, this distinction
was not possible and it would be a useful addition to distinguish
not only between AP and PA but also between PA and lateral
view to provide full support for all view positions in the clinical
routine.

In summary, our study shows that it is possible to extract
the AP/PA view position of a chest X-ray from the image
data using deep learning and thus correct incorrectly entered
metadata.

▶ Fig. 6 Visualization of the generated Grad-CAMs for each model (columns) from the ResNet (512 × 512) for the PA (left) and AP (right) view
position. The Grad-CAMs indicate that the networks use different reference points for the distinction between both view positions like the scapula,
the heart, ribs, and the neck. The bottom row shows the averaged Grad-CAMs for each model within the ensemble.

▶ Abb.6 Visualisierung der generierten Grad-CAMs für jedes Modell (Spalte) innerhalb des ResNet (512 × 512) -Ensembles für die PA- (links) und
AP (rechts) -Aufnahmeposition. Die Grad-CAMs zeigen, dass das Netzwerk unterschiedliche Referenzpunkte für die Unterscheidung der Aufnah-
mepositionen wie die Skapula, das Herz, die Rippen oder den Nacken nutzt. Die letzte Reihe zeigt die durchschnittlichen Grad-CAMs für jedes
Modell innerhalb des Ensembles.
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CLINICAL RELEVANCE

▪ It is known that a certain percentage of manually entered

meta information from radiological examinations can be

incorrect.

▪ The manual monitoring and, if necessary, correction of

such metadata would be very time-consuming and thus

not practicable.

▪ An automatic correction of such metadata by deep learn-

ing-based software would be a cost-effective way to re-

duce billing errors, poor quality of research data or even

wrong diagnoses and treatments.
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