Int J Sports Med 2020; 41(14): 1009-1016
DOI: 10.1055/a-1192-6187
Training and Testing

Effects of a 20-min Nap after Sleep Deprivation on Brain Activity and Soccer Performance

1   College of Sports Science and Technology, Mahidol University, Salaya, Nakhonpathom, Thailand
,
Papatsorn Ramyarangsi
1   College of Sports Science and Technology, Mahidol University, Salaya, Nakhonpathom, Thailand
,
Vorasith Siripornpanich
2   Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
› Author Affiliations

Abstract

We examined effects of a 20-min nap following 3 h of sleep deprivation on brain wave activity, auditory reaction time, the running-based anaerobic sprint test, leg muscle strength and the rating of perceived exertion in male college soccer players. Eleven players underwent three sleep conditions; normal sleep, sleep deprivation and 20-min nap after sleep deprivation. The sleep deprivation demonstrated an increase in the mean power of delta waves over the frontal area and a decrease in the mean power of alpha waves over the parietal area compared to the normal sleep. The nap and the sleep deprivation showed an increase in auditory reaction time compared with those in the normal sleep. The sleep deprivation demonstrated a decrease in the running-based anaerobic sprint test compared to the normal sleep, whereas the nap has partially reversed only minimal power and average power of the running-based anaerobic sprint test. The nap showed a recovery effect on leg muscle strength, but not on the rating of perceived exertion compared with the sleep deprivation. Thus, a 20-min nap after sleep deprivation did not completely return brain activity back to active state and did not entirely reverse the negative impact of sleep deprivation on soccer performance in soccer players.



Publication History

Received: 15 November 2019

Accepted: 18 May 2020

Article published online:
06 July 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Alhola P, Polo-Kantola P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr Dis Treat 2007; 3: 553-567
  • 2 Mah CD, Kezirian EJ, Marcello BM. et al. Poor sleep quality and insufficient sleep of a collegiate student-athlete population. Sleep Health 2018; 4: 251-257 DOI: 10.1016/j.sleh.2018.02.005.
  • 3 Erlacher D, Ehrlenspiel F, Adegbesan OA. et al. Sleep habits in German athletes before important competitions or games. J Sports Sci 2011; 29: 859-866 DOI: 10.1080/02640414.2011.565782.
  • 4 Juliff LE, Halson SL, Peiffer JJ. Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport 2015; 18: 13-18 doi:10.1016/j.jsams.2014.02.007
  • 5 Reilly T, Edwards B. Altered sleep-wake cycles and physical performance in athletes. Physiol Behav 2007; 90: 274-284 doi:10.1016/j.physbeh.2006.09.017
  • 6 Cullen T, Thomas G, Wadley AJ. et al. The effects of a single night of complete and partial sleep deprivation on physical and cognitive performance: A Bayesian analysis. J Sports Sci 2019; 37: 2726-2734. DOI: 10.1080/02640414.2019.1662539.
  • 7 Fullagar HH, Skorski S, Duffield R. et al. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med 2015; 45: 161-186 DOI: 10.1007/s40279-014-0260-0.
  • 8 Souissi N, Chtourou H, Aloui A. et al. Effects of time-of-day and partial sleep deprivation on short-term maximal performances of judo competitors. J Strength Cond Res 2013; 27: 2473-2480. DOI: 10.1519/JSC.0b013e31827f4792.
  • 9 Abedelmalek S, Chtourou H, Aloui A. et al. Effect of time of day and partial sleep deprivation on plasma concentrations of IL-6 during a short-term maximal performance. Eur J Appl Physiol 2013; 113: 241-248 DOI: 10.1007/s00421-012-2432-7.
  • 10 Reyner LA, Horne JA. Sleep restriction and serving accuracy in performance tennis players, and effects of caffeine. Physiol Behav 2013; 120: 93-96 doi:10.1016/j.physbeh.2013.07.002
  • 11 Mejri MA, Yousfi N, Mhenni T. et al. Does one night of partial sleep deprivation affect the evening performance during intermittent exercise in Taekwondo players?. J Exerc Rehabil 2016; 12: 47-53 DOI: 10.12965/jer.150256.
  • 12 Verweij IM, Romeijn N, Smit DJ. et al. Sleep deprivation leads to a loss of functional connectivity in frontal brain regions. BMC Neurosci 2014; 15: 88. DOI: 10.1186/1471-2202-15-88.
  • 13 Gorgoni M, Ferlazzo F, Ferrara M. et al. Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med 2014; 15: 1132-1139 DOI: 10.1016/j.sleep.2014.04.022.
  • 14 Posada-Quintero HF, Reljin N, Bolkhovsky JB. et al. Brain activity correlates with cognitive performance deterioration during sleep deprivation. Front Neurosci 2019; 13: 1001. DOI: 10.3389/fnins.2019.01001.
  • 15 Brooks A, Lack L. A brief afternoon nap following nocturnal sleep restriction: Which nap duration is most recuperative?. Sleep 2006; 29: 831-840 doi:10.1093/sleep/29.6.831
  • 16 Gillberg M, Kecklund G, Axelsson J. et al. The effects of a short daytime nap after restricted night sleep. Sleep 1996; 19: 570-575
  • 17 Tietzel AJ, Lack LC. The recuperative value of brief and ultra-brief naps on alertness and cognitive performance. J Sleep Res 2002; 11: 213-218 doi:10.1046/j.1365-2869.2002.00299.x
  • 18 O’Donnell S, Beaven CM, Driller M. The influence of match-day napping in elite female netball athletes. Int J Sports Physiol Perform 2018; 13: 1143-1148 doi:10.1123/ijspp.2017-0793
  • 19 Hammouda O, Romdhani M, Chaabouni Y. et al. Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint. Biological Rhythm Research 2018; 49: 927-939 DOI: 10.1080/09291016.2018.1429553.
  • 20 Petit E, Mougin F, Bourdin H. et al. A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. Eur J Appl Physiol 2014; 114: 305-315. DOI: 10.1007/s00421-013-2776-7.
  • 21 Nedelec M, Halson S, Abaidia AE. et al. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med 2015; 45: 1387-1400 DOI: 10.1007/s40279-015-0358-z.
  • 22 Pallesen S, Gundersen HS, Kristoffersen M. et al. The effects of sleep deprivation on soccer skills. Percept Mot Skills 2017; 124: 812-829 DOI: 10.1177/0031512517707412.
  • 23 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123
  • 24 Sargent C, Lastella M, Romyn G. et al. How well does a commercially available wearable device measure sleep in young athletes?. Chronobiol Int 2018; 35: 754-758 DOI: 10.1080/07420528.2018.1466800.
  • 25 Monk TH. The post-lunch dip in performance. Clin Sports Med 2005; 24: e15-e23 xi-xii. doi:10.1016/j.csm.2004.12.002
  • 26 Reilly T, Atkinson G, Edwards B. et al. Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (soccer). Chronobiol Int 2007; 24: 507-519 DOI: 10.1080/07420520701420709.
  • 27 Klem GH, Luders HO, Jasper HH. et al. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 1999; 52: 3-6
  • 28 Siripornpanich V, Rachiwong S, Ajjimaporn A. A pilot study on salivary cortisol secretion and auditory P300 event-related potential in patients with physical disability-related stress. Int J Neurosci 2020; 170-175 doi:10.1080/00207454.2019.1667786
  • 29 Zagatto AM, Beck WR, Gobatto CA. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res 2009; 23: 1820-1827 doi:10.1519/JSC.0b013e3181b3df32
  • 30 Burgess KE, Holt T, Munro S, Swinton P. Reliability and validity of the running anaerobic sprint test (RAST) in soccer players. Journal of Trainology 2016; 5: 24-29 doi:10.17338/trainology.5.2_24
  • 31 Buchheit M. The 30-15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res 2008; 22: 365-374 doi:10.1519/JSC.0b013e3181635b2e
  • 32 Koley S, Khajuria A, Melton S. The correlation between back strength and leg strength among Indian inter-university male cricketers. Facta Universitatis-Series: Physical Education and Sport 2010; 8: 125-127
  • 33 Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health 1990; 16 Suppl 1 55-58
  • 34 Munch M, Knoblauch V, Blatter K. et al. The frontal predominance in human EEG delta activity after sleep loss decreases with age. Eur J Neurosci 2004; 20: 1402-1410 DOI: 10.1111/j.1460-9568.2004.03580.x.
  • 35 Knoblauch V, Krauchi K, Renz C. et al. Homeostatic control of slow-wave and spindle frequency activity during human sleep: Effect of differential sleep pressure and brain topography. Cereb Cortex 2002; 12: 1092-1100 DOI: 10.1093/cercor/12.10.1092.
  • 36 McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 1997; 20: 185-215. doi:10.1146/annurev.neuro.20.1.185
  • 37 Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Brain Res Rev 1999; 29: 169-195
  • 38 Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 1995; 15: 3526-3538
  • 39 Ferreira C, Deslandes A, Moraes H. et al. Electroencephalographic changes after one night of sleep deprivation. Arq Neuropsiquiatr 2006; 64: 388-393
  • 40 Taub JM, Tanguay PE, Clarkson D. Effects of daytime naps on performance and mood in a college student population. J Abnorm Psychol 1976; 85: 210-217
  • 41 Hayashi M, Ito S, Hori T. The effects of a 20-min nap at noon on sleepiness, performance and EEG activity. Int J Psychophysiol 1999; 32: 173-180
  • 42 Milner CE, Cote KA. Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping. J Sleep Res 2009; 18: 272-281. doi:10.1111/j.1365-2869.2008.00718.x
  • 43 Muto V, Jaspar M, Meyer C. et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science 2016; 353: 687-690. DOI: 10.1126/science.aad2993.
  • 44 Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol 2005; 25: 117-129 doi:10.1055/s-2005-867080
  • 45 Daaloul H, Souissi N, Davenne D. Effects of napping on alertness, cognitive, and physical outcomes of karate athletes. Med Sci Sports Exerc 2019; 51: 338-345 doi:10.1249/MSS.0000000000001786
  • 46 Waterhouse J, Atkinson G, Edwards B. et al. The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci 2007; 25: 1557-1566 DOI: 10.1080/02640410701244983.
  • 47 Kim TW, Jeong JH, Hong SC. The impact of sleep and circadian disturbance on hormones and metabolism. Int J Endocrinol 2015; 2015: 591729 DOI: 10.1155/2015/591729.
  • 48 Abdessalem R, Boukhris O, Hsouna H. et al. Effect of napping opportunity at different times of day on vigilance and shuttle run performance. Chronobiol Int 2019; 36: 1334-1342. DOI: 10.1080/07420528.2019.1642908.
  • 49 Boukhris O, Abdessalem R, Ammar A. et al. Nap opportunity during the daytime affects performance and perceived exertion in 5-m shuttle run test. Front Physiol 2019; 10: 779 DOI: 10.3389/fphys.2019.00779.
  • 50 Hsouna H, Boukhris O, Abdessalem R. et al. Effect of different nap opportunity durations on short-term maximal performance, attention, feelings, muscle soreness, fatigue, stress and sleep. Physiol Behav 2019; 211: 112673. DOI: 10.1016/j.physbeh.2019.112673.