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Introduction

In silico methods play increasingly noticeable roles in all
fields of biological sciences, at different scales and levels of
research and development. Bioinformatics, molecular
dynamics, and computer-assisted drug design have become
widely used tools. In comparisonwith them, development of
full-fledged in silico models of physiological and pathologi-
cal processes lags behind: this “ultimate” goal of theoretical
biology remains challenging even now. Still, the last decade
witnessed their progress in many fields including that of
hemostasis and thrombosis.1–7 Computermodels of this type
are being used for experimental planning, prediction and
analysis in basic research, for drug target discovery, or to
personalized diagnostics.

The hemostatic response, as well as arterial thrombus
formation, includes several steps beginning with platelet
adhesion, activation, formation of aggregates, shape change,
and secretion (►Fig. 1A).8 These are usually grouped together
as primary or platelet-dependent hemostasis. It is followed
by secondary hemostasis, blood coagulation, that cements the
initial platelet plug.9We thus traditionally identify two essen-
tial parts of the hemostatic system. However, from themodel-
ing point of view, it turned out that modeling platelets falls
apart into platelet adhesion andplatelet signaling, each requir-
ing different approaches. As a result, there are mainly three
lines of computer model development in the field: models of
platelet adhesion, models of platelet signaling, and models of
blood coagulation biochemistry. Although there are currently
only initial attempts to combineall theseaspectsofhemostasis
in a singlemodel, there are alreadycomputermodels of almost
all elements by themselves.
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Abstract Computational physiology, i.e., reproduction of physiological (and, by extension,
pathophysiological) processes in silico, could be considered one of the major goals
in computational biology. One might use computers to simulate molecular interac-
tions, enzyme kinetics, gene expression, or whole networks of biochemical reactions,
but it is (patho)physiological meaning that is usually the meaningful goal of the
research even when a single enzyme is its subject. Although exponential rise in the use
of computational and mathematical models in the field of hemostasis and thrombosis
began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally
for platelet signal transduction), the majority of their successful applications are still
focused on simulating the elements of the hemostatic system rather than the total
(patho)physiological response in situ. Here we discuss the state of the art, the state of
the progress toward the efficient “virtual thrombus formation,” and what one can
already get from the existing models.
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From the physical point of view, initial platelet plug forma-
tion is the formation of a barrier by means of cell aggregation,
which is controlled by blood flow andmodulation of intercel-
lular binding forces. While flow brings new cells or detaches
parts of the aggregate, themodulation of binding is controlled
by integrin activation. In addition to platelets, a critical role in
this is played by red blood cells (RBCs) that can contribute to
both platelet margination in vessels and diffusion. Because of
this, the computer models aimed at primary hemostasis or
thrombosis are usually “physically challenging,” as they
require considerations of flowing blood rheology, and cell–
cell interactionmechanics. Themajorityof theexisting in silico
studies therefore focus on solving the physical and computa-
tional aspects of platelet adhesion, although some of them
attempt to includeelementsofplatelet signal transductionand
coagulation pathway. We analyze progress and complications
in this field in the first part of this review.

The response of platelets to stimulation is controlled by a
complex network of signal transduction (only partially shown
in ►Fig. 1B) that rapidly integrates signals from numerous
receptors (activation by adenosine diphosphate [ADP], colla-

gen, thrombin, thromboxaneA2, adrenaline, etc.; inhibitionby
NO and prostacyclin) and forms the ultimate functional
responses including adhesion and aggregation (caused by
the change in the functional state of integrins), secretion of
α- and dense granules, shape change, procoagulant activity,
vesiculation, and contraction. Development of the mecha-
nism-driven models of these processes is not usually compu-
tationally complex, in contrast to those of platelet transport
and adhesion, but requires significant investments into un-
derstanding the molecular events that drive intracellular
signaling. Analysis of the platelet signal transduction models
constitutes the second section of this review.

Finally, blood coagulation (►Fig. 1C) that goes side by side
with fibrinolysis represents a combination of biochemical
challenges with complexities of diffusional and convectional
transport.10 The models that focus on blood coagulation and
fibrinolysis biochemistrywill be discussed in the third section
of this article. Actually, some of the membrane-dependent
reactions of blood coagulations are so complex by themselves
that large models are designed to deal with their regulation
alone11–17; the same is true for fibrin polymerization.18

Fig. 1 Elements of the hemostatic response. (A) Platelet adhesion to the site of damage, activation (shown by green to red transition),
secretion of ADP and thromboxane A2, and thrombus growth. (B) Some of the platelet signal transduction pathways (the ones activated by
thrombin via PAR1 and PAR4 receptors in human platelets55) that determine the functional response. (C) Blood coagulation network that
functions within the thrombus to solidify it.5 It is a cascade of enzymatic reactions, with numerous positive and negative feedbacks. It is initiated
by binding of the extravascular proteinTF to an activated factor VIIa and converting it into an active protease enzyme complex. Many reactions of
the cascade take place on the activated platelet surface and could be a subject of complicatedmathematical models by themselves.11–17 The last
step is conversion of fibrinogen into fibrin to form the gelatinous clot. PAR, protease-activated receptor; TF, tissue factor.
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However, the focus of the present articlewill be on themodels
of coagulation as a whole.

The last thing to discuss before going to the models is the
goal of the model development: this should definitely affect
which models to develop and to what degree. As a matter of
fact, the goals of model development is rarely discussed in
the field of mathematical and computational biology, often
leading experimental researchers to believe that modeling is
just an idle exercise. Even now, in the age of computer
systems biology, the ideas behind model development are
foreign to many experienced hematologists. On more than
one occasion, the authors of this review heard from the
leading researchers in the hemostatic field questions and
statements: “How can you ever be certain that your model is
correct?,” “Real cell biochemistry is too complex to be
represented in a computer model,” “I will never believe
into these simulations, you can make a sufficiently complex
model behave in any manner of your liking” and such.
Physical models like the ones discussed in the previous
section are more rarely questioned like this, in contrast to
the biochemical ones, probably because mechanical model-
ing is more intuitively obvious. Interestingly, experts in
physics and mathematics often do not like models of bio-
chemical networks either, and ask similar questions: the
huge biochemical models are too different from the ones
traditionally studied in physics and mathematics.

The view of the authors of this article is that a computer
model is not different from an experimental model: it is a
simplified system that grasps some essential features of the
real system sufficiently faithfully so that it could be used to
test some hypotheses and generate predictions. It is exactly
in the samemanner that animal thrombosis models are used
for studies before going on to humans. This does not mean
that mice no matter how much we humanize them can ever
hope to exactly reproduce real-life human clinical condi-
tions; as a matter of fact, in most cases we do not need go too
far to make animals human-like, unless we have a reason to
believe that we need this. The computer model of a biological
network, likewise, is a tool for hypothesis testing and exper-
imental planning. If we believe that something occurs in
such-and-such manner (or probably if we have several
alternative hypotheses), we can design a model to check
whether our ideas of the system structure are in agreement
with its behavior. If it is, we can further simulate predictions
and test them experimentally to go beyond, and to discover
the limits of the model and generate new knowledge.

In Silico Modeling of Arterial Thrombus
Formation

It is generally accepted that primary events of hemostasis and
arterial thrombosis involve formation of a platelet aggregate,
which is further stabilized by fibrin network. Generally, for-
mation of an aggregate in a wound is called hemostasis.
However, some of the vessel-wall injuries result in formation
of the massive thrombus in the vessel itself whichmay lead to
vessel occlusion. Such scenario is reproduced in a vast array of
in vivo and in vitromodels. Importantly, the reasonwhy some

of the vessel-wall injuries result in pathological thrombus
formation ispoorly understood. Thus, the generalmechanisms
that govern thrombus dynamics andmechanisms of occlusion
during both normal and pathological responses to the injury
have been a subject of research for several decades.

According to thewidelyacceptedviewonarterial thrombus
formation, this process involves several critical phenomena,
which include adhesion of platelets to the injured vessel wall,
aswell as to thesurfaceofagrowingplatelet aggregate, platelet
activation, which basically involves integrin activation, shape
change, granule release, contraction and formation of procoa-
gulant platelets in some cases, platelet aggregation, which
strongly depends on integrin activation, and generation of
thrombin, which is a potent activator of platelets, through a
coagulation cascade leading to the formation of a fibrin
network which is important for stabilizing the aggregate
against the flow or against the blood pressure in case if the
flow is blocked. Most of the published models are focused on
either a particular aspect of thephenomenonor on thegeneral
dynamics of thrombus under given conditions.

One of the critical steps for the primary adhesion of
platelets is their transport to the injury site which is largely
dependent on the platelet margination effect due to platelet–
RBC interaction at the shear flow.19 The mechanisms of
platelet margination have been extensively studied using
theoretical models based on either macroscopic continuous
descriptions20 or more detailed simulations resolving single
cells.21 It has been recently demonstrated in silico that besides
standard shear diffusion, platelets could be also involved in a
fast transverse transport in the direction to the vesselwall due
to transient entrapping in the cavities between bigger RBCs.22

Interestingly, such fast transport might be responsible for the
rapid margination dynamics which is expected to happen in
vivo due to the fact that platelet margination is observed in a
circulation system of living animals—where multiple vessel
bifurcations and vein valves tend to constantly disturb platelet
distribution through the vessel cross-section. Platelet–RBC
interactions have been shown to be crucial for the flux of
platelets to the vessel wall in the case of a plane surface of in
vitro flow chambers and several models of the process have
been proposed.23

The redistribution of RBCs and platelets in the case of
disturbed flow (for example provided by vessel stenosis) was
also suggested to influence the primary kinetics of platelet
adhesion.24 Continuous models describing platelet adhesion
using the RBC–platelet interaction-induced flux of the plate-
let “substance” to the vessel wall or to the surface of platelet
aggregates formed as a result of such a flux have been used to
study the dynamics of occlusive thrombus formation in the
stenosed arteries.25

It is now clear that the first steps of platelet-dependent
response are driven by purely mechanical processes of the
interaction of platelet surface receptors (GPIbalpha and
integrins) with their ligands on the surface of the injured
vessel wall (von Willebrand factor [vWF], fibrinogen, fibro-
nectin, laminins, etc.). Under conditions of arterial blood
flow it is widely accepted that vWF–GPIbalpha interaction is
of major importance for primary platelet adhesion. In silico
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models of the process revealed the importance of both the
discoid platelet shape26 and vWF length for efficient
adhesion.27

Formation of the platelet aggregate in the case of dis-
turbed flow described in various experimental models28,29

seems to represent another biomechanical phenomenon
which strongly depends on the vWF–GPIbalpha interaction.
It has been demonstrated that activation of A1 domain
interaction of vWF with GPIbalpha follows the flow-induced
unfolding of the multimers,30,31 which might happen both
on the surface and in the bulk solution. However, the detailed
physical description of the processes leading to platelet
aggregation under disturbed flow is still missing. One of
the suggested mechanisms involves vWF unfolding32 due to
possible presence of significant elongational velocity gra-
dients in case of stenosis. Interestingly, this hypothesis
implies that the vWF activation process should occur in
the bulk at some distance from the surface. Such a possibility
has been recently analyzed using the coarse-grained model
of vWF dynamics under conditions corresponding to an in
vitro model of vessel stenosis.29

During the last decades, dozens of thrombus formation
models were developed addressing various knowledge gaps
in this complex phenomenon. One of the intriguing ques-
tions regarding the mechanism triggering the occlusion has
been addressed by the simplified model of thrombus growth
under constant pressure boundary conditions.33 Using this
model, it was demonstrated that the size of the injury might
represent the crucial parameter, which determines the
thrombus fate due to dependence of the maximum shear
rate generated on thrombus surface on the hydraulic resis-
tance of the thrombus. In this model, the total flux of the
platelets to thrombus surface was considered to depend
solely on the surface shear rate, which was shown to be a
function of both thrombus height and length due to constant
pressure boundary conditions.

The most recent in silico models of thrombus formation
are focused on the origin and the consequences of internal
thrombus heterogeneity. It was shown for both microvascu-
lature andmacrovasculature that laser-induced injuries gen-
erate nonocclusive mural thrombi possessing two-stage
dynamics (growth followed by shrinkage) and pronounced
internal heterogeneity (having a “core” of highly activated
platelets close to the injury size and a mobile “shell” of
reversibly activated discoid platelets which covers the
“core”).34,35 This “core and shell” model of the hemostatic
thrombus received much attention in the field, so here we
aimed at formulation of some questions that we believe are
important and that might be tackled using novel in silico
models (►Fig. 2), either particle-based36,37 or continuous.38

The origin of such heterogeneity has been a subject of
several computational studies,39,40 which were focused on
the impact of agonist transport parameters within thrombus
on the local platelet density and corresponding geometry of
interplatelet space. Using the continuous viscoelastic model
of the preformed heterogeneous clots, it was recently shown
that the stability of such thrombi against the flow is largely
dependent on the internal permeability distribution.41

Another continuous model of thrombus formation which
takes into account platelet aggregation, secretion, and coagu-
lation has been used to study the dynamics of thrombus
formation on the tissue factor (TF) observed in vitro under
venous shear rates. This model predicted the dependence of
both clot size and internal composition on the surface density
of the TF and the length of the corresponding region.42

They key mechanism responsible for internal thrombus
heterogeneity is contraction. Contraction is a process which
is driven by mechanical coupling of actomyosin complexes
inside platelet and integrins on the surface of platelet. This
active ATP-dependent process leads to overall contraction of
the platelet aggregate due to internal forces acting within
each platelet which are translated to interplatelet contacts
through fibrinogen bridges between integrins. This process
has been described in both in vitro and in vivo arterial
thrombi and was recently demonstrated to be the driving
mechanism of procoagulant platelet redistribution within
the growing thrombus.43 To describe the mechanics of the
process, a simple particle-based model of platelet aggregate
contraction based onMorse potential has been introduced.43

The particle-based model with platelet–platelet interac-
tion described usingMorse potential was recently developed
and utilized to describe platelet aggregation observed under
normal and disturbed flow conditions.36 Another particle-
based model of thrombus dynamics with quasi-steady flow
approximation and heterogeneous particle sizes was
shown44 to successfully reproduce the parameters of shell
dynamics observed in vivo.

The dynamics of the outer layers of heterogeneous throm-
bus was suggested to play an important role in the regulation
of thrombus size andwas studiedusing thedissipative particle
dynamicsmodel.37,45After the removal of the outer thrombus
layers, the surface of the remaining fibrin-rich thrombus was
suggested to be weakly adhesive, thus preventing further
thrombus propagation and suggesting a mechanism for regu-
lation of thrombus size. Another mechanism, which was
suggested to limit the propagation of thrombus, was studied
in a continuous model of thrombosis46 and emphasized the
role of thehindered transport of species in the internal regions
of the thrombus leading to the decrease of substrate supply
and hence lowering of the thrombin production rate.

To conclude, we would like to emphasize that despite
several interesting mechanisms of thrombus size regulation
were suggested and studied in silico during the last decade,
the factors determining the observed dynamics of nonocclu-
sive thrombi in vivo as well as the mechanisms responsible
for triggering occlusive thrombosis are still not clear. The
effects of conditions, such as the vessel size or geometry of
the damaged area or biochemistry of the vessel wall, are still
poorly understood.

Computer Models of Platelet Signal
Transduction and Function

Following the overall timeline of signal transduction research,
in silico modeling of platelet function has been lagging
behind. Important predictions from computer models in blood
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coagulation appeared as early as 1989,47 while first thrombus
formationmodelswith sufficiently complicatedmechanismsof
platelet adhesion were designed a decade later, by 1999.48 For
comparison, a pioneering study to describe the signal transduc-
tion pathway for platelet stimulation by ADP via P2Y1 receptor
leading to calcium increase appeared only one more decade
later, in 2008.49 Thiswas followed bya sharp rise in the number
of models that focused on different signal transduction path-
ways (seea comprehensive recent list in, e.g.,Dunsteret al3) and

even traced some of the pathways down to the functional
responses, like phosphatidylserine exposure.50Models of plate-
letmetabolismwerealsoproposed,51aswellascombinationsof
signal transductionwith metabolic regulation.52 Here we shall
neither go into the history of the development of thesemodels,
nordesign anupdated comprehensive list of them, nor dive into
themethodology (more specialized papers like that of Dunster
et al3 are more suitable for this), but rather focus on the main
questions: what they are, how do the models of signal

Fig. 2 Schematic illustration of the current views and questions, as well as model examples. (A) “Core and shell” concept of arterial thrombus
structure and corresponding questions. (B) An example of the results obtained using a continuous model of microvascular thrombus, where
blood clot stability and clot fraction were analyzed at an increasing flow shear rate for heterogeneous thrombi.41 (C) Example of thrombus
dynamics obtained using the dissipative particle dynamics model of thrombus formation.45 The detachment of the outer layer of thrombus (with
no fibrin) is demonstrated.
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transduction fit into development of in silico models of hemo-
stasisandthrombosis,whatdoweneedtomakethemfulfill this
rolebetter, andwhat are theother purposesof theirapplication.

The computer models of platelet signal transduction and
function are usually sets of ordinary differential equations
(ODEs) that are based on the laws of chemical kinetics, where
variables are concentrations of species in the cytoplasm or
other compartments. For example, the first step to describe
P2Y12 activation by ADP53 is to calculate the rate of their
binding and dissociation determined by the law of mass
action for their concentrations:

V¼ k [P2Y12]·[ADP]� km·[P2Y12�ADP] (1)

The platelet shape and volume change are usually not
considered in these models, so they do not have “mechani-
cal”parts. The small size of platelets usually does notwarrant
consideration of transport processes either, so use of partial
differential equations in their models of signal transduction
(which could be the case with larger cells) is not usually
necessary. There could be exceptions if nonuniform mem-
brane processes like lipid raft involvement are considered
(see the recent example of CLEC-2 signal transduction model
in platelets54). In contrast, stochastic algorithms might be
needed because some of the species could be at low quanti-
ties (less than 100–1,000molecules), whichmakes the use of
ODE inappropriate.50,55 As a result, the models of platelet
signal transduction are usually relatively simple computa-
tionally and can be solved using various commercial or
freeware ODE solvers, or specialized biochemical simulators
like COPASI.56 In contrast, the main challenge is usually
biochemical: the signaling network is large and poorly
characterized, so its modeling requires in-depth analysis
and a lot of information. Recent progresses on platelet
quantitative proteomics,57,58 as well as new methods of
signaling monitoring, make development and validation of
such models much more accessible and reliable, but the
remaining challenges are still great.

Going back to platelet signaling, the first way to use the
models is exactly to identify issues in our understanding of
signaling pathways, to test suggestions about regulation and
about the roles of proteins and reactions. The examples of
successful models are usually not the stories of model devel-
opmentbut rather storiesofhypotheses testedandpredictions
performed;hypotheses thatwere too complex tobe addressed
with pure experiments. Roles of the negative feedback in the
regulation of platelet activation via GPVI,59 importance of
spatial receptor distribution rather than copy numbers in
the regulation of the response,60 identification of the control-
ling stages in CLEC-2 signaling,54 developing hypotheses for
heterogeneity of integrin response in immune thrombocyto-
penia,61 the role of mitochondrial calcium integration in
procoagulant platelet formation,50,62 importance of platelet
surface-to-volume ratio and the number of mitochondria in
programmedcell deathofWiskott–Aldrich syndromeplatelets
as a possible mechanism behind thrombocytopenia,52 and
interplay of protease-activated receptor 1 (PAR1) and PAR4
to form the optimal response of platelets to thrombin in time-

and concentration-dependent manner55; these are examples
of how one might use a model of a signaling pathway to learn
new information about the system.

As an example, let us consider a relatively straightforward
problem of interplay between PAR1 and P2Y12 receptors in
procoagulant platelet formation. It has been long known that
although ADP cannot induce phosphatidylserine externaliza-
tion, it can significantly increase the number of procoagulant
platelets produced by thrombin or dual stimulation by provid-
ing additional activation via P2Y12 receptor.63 To gain insight
into this, we designed a model including both of these path-
ways (►Fig. 3A) and incorporated a potential mechanism of
phospholipase C-beta regulation by a catalytic subunit of
protein kinase A. The model simulations (►Fig. 3B) showed
that thismechanismwas sufficient to explain the results of the
experiments (►Fig. 3C). However, the model also predicted
that even greater effects could be achieved by adding ADP
before PAR stimulation, because it takes some time for the
cAMP level to fall, and this prediction was confirmed experi-
mentally (►Fig. 3D). This, in turn,made us to propose that this
could be important in thrombus formation because it is likely
that platelets in the thrombus are first activated by rapidly
diffusing ADP and only then by thrombin (►Fig. 3E).

This example shows the logic of using a model to obtain
information about a signaling pathway that can then poten-
tially lead to a physiologically meaningful response. Of course,
to go further, one would have to integrate signaling models
(probably, in a simplified manner) with thrombus formation
models. One example of this is a pioneering study of Flamm
et al,64 where a platelet signaling model represented by a
neural network is coupled with a platelet deposition model.

Still, it is vital to underline that it is not necessary to create a
super-integratedmodel to obtain a physiologicallymeaningful
result, to understand a disease, or to test a target candidate.
Among the examples cited above, there was a model that
predicted that platelets of the patients with Wiskott–Aldrich
syndrome will less likely undergo necrosis if they are large64;
the experiments revealed that indeed the platelet count
significantly correlates with the platelet size in the WAS
patients. One can use a model to make a step at the level of
signal transduction only, and then extend the conclusions to
thrombus formation or other purpose using other tools.

Computer Models of Blood Coagulation and
Fibrinolysis

Blood coagulation cascade, a complex network of biochemi-
cal reactions leading to fibrin formation, became one of the
first biological systems whose outcome was described in
mathematical terms starting at least from 1966,65 and since
then it has been implemented in some way in numerous
papers. These studies, which initially were mostly aimed at
research, have been recently increasingly used for biomedi-
cal developments: the examples over the last year include
clustering of thrombin generation diagnostic data,66 investi-
gation of thrombin inhibitors,67 phenotype discrimination in
hemophilia,68 mechanisms of impaired coagulation in neo-
nates,69 and dilutional coagulopathy.70
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There are several reasons why this system was so widely
used as an object of modeling. First, it is pretty well investigat-
ed, and a lot is known about its participants: concentrations
and reactionswith their rates. Second, it is complex, and simple
logical conclusions on the impact of one or another parameter
are difficult withoutmathematical analysis. Third, it is relevant
for human health, thus it has value aside pure math. Here we
will describe the basic principles and current state in mathe-
matical simulations of blood coagulation and fibrinolysis.

The models of blood coagulation and fibrinolysis are, simi-
larly to the models of platelet signaling, sets of differential

equations based on the laws of chemical kinetics. Stochastic
simulations are used very rarely.71 However, in contrast to
platelet signaling, spatial heterogeneity is vital, so quite several
of thesemodelsconsider spatialpropagationof thefibrinclotor
itsdissolution,72–79whileothers could include this implicitly.80

Models of blood coagulation (and any biological system as
well) can be divided in two groups based on the principle of
how they describe the object of simulation. These groups are
phenomenological and mechanistic models. The first
describes the system using some general rules; for blood
coagulation, they may be like these: the clot must be solid;

Fig. 3 Interplay of PAR1 and P2Y12: insights from a mathematical model.53 (A) The main reactions of the model. The system includes two activators,
thrombin receptor activation peptide SFLLRN that initiates calcium oscillation by acting via Gq-coupled receptor PAR1, and ADP that decreases cAMP by
acting on its Gi-coupled receptor P2Y12. The pathways converge at the level of PLC that depends on PKA. (B) Dynamics of the essential variables: SFLLRN
raises IP3 and induces calcium oscillations, while ADP decreases cAMP with relatively slow characteristic times. (C) Procoagulant platelet formation as a
function of thrombin-activating peptide (SFLLRN) and ADP concentration when added together. (D) Procoagulant platelet formation as a function of
thrombin-activating peptide (SFLLRN) andADP concentrationwhen added oneafter another: whenADPhas some time to act, it can decrease cAMP greater
and increase platelet sensitivity to SFLLRN. (E) Potential role of the ADP-dependent preactivation in thrombus formation, as a preparation for thrombin
stimulation: rapidly diffusing and easily released ADP precedes thrombin during thrombus formation and sensitizes the platelets on its way in a
concentration-dependentmanner. cAMP, cyclic adenosinemonophosphate; PAR, protease-activated receptor; PLC, phospholipase C; PKA, protein kinase A.
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the transition from the liquid to the solid statemust occur fast;
the clot must be localized near the damaged site and it must
have a definite border with liquid blood. Based on such
assumptions, a model of two partial differential equations
was developed,81 which described a self-sustaining wave of
clotting propagation, later found experimentally.73 Such types
of models are suitable for hypothesis testing, investigation of
some basic features of the system. The second type of models,
mechanistic, describes the whole system or part of it using
experimentally observed reactions, with measured reaction
rates.82 These models can be used for detailed investigation of
the system’s properties, regulations at different scales, and
interaction with therapeutic agents.

Although the phenomenological models of blood coagu-
lation are not very popular nowadays, when computational
power is sufficient for simulation of almost anymodelwe can
propose, these simple models played a noticeable role in the
understanding of mechanisms of clotting regulation and, in
our opinion, they are still a powerful instrument, which
should not be neglected. In Beltrami and Jesty,83 analysis
of positive feedback loops in regard to response in systems
with activation thresholds was performed. The authors
found that a long-range positive feedback (when final en-
zyme produced in the last loop activated the initial step in
the first loop) was able to overcome the threshold in the case
of a high catalytic rate, or to make the system stable, i.e.,
abolish the oscillatory behavior. Later, the importance of a

long-range feedback of thrombin-catalyzed factor XI activa-
tion for blood coagulation propagation was shown experi-
mentally.73 A systemwith a positive feedback loop localized
on a membrane in contact with a flowing medium was
examined by Beltrami and Jesty,84 and they found that the
feedback threshold was controlled by the flow rate of the
adjacent medium and the physical size of the membrane
patch. In terms of blood coagulation, it means that blood
clotting onset depends on the blood flow velocity and the
size of the damaged area in a threshold manner. This finding
was experimentally confirmed.85

A series of mechanism-driven models originating from the
work of Panteleev et al,75 which included a comprehensive
description of the coagulation network, coagulation factor
interactions with platelets, and transport processes, was
aimed at the regulation of blood coagulation in space and
time.►Fig. 4 shows an early example of the use of a model to
study the role of intrinsic tenase in fibrin clot growth. Experi-
mental size of the fibrin clot versus time (►Fig. 4A) is
reproduced in a validated model (►Fig. 4B), which allows us
to gain insight into the contribution of intrinsic and extrinsic
tenases to factor Xa generation in space and time (►Fig. 4C):
one can notice that extrinsic tenase works near the activator,
while extrinsic tenase is the main producer far from it.

These studies investigated the mechanisms behind
thrombus growth and its stopping,73,75 the role of flow in
the regulation of coagulation pathways,77 formation of the

Fig. 4 Spatial regulation of coagulation: insights from a mathematical model.75 (A) Fibrin clot size as a function of time for different
concentrations of factor VIII: the experiment. (B) The same for computer simulations. Notice that factor VII does not affect lag-time in either
model or experiments, but rather regulates the spatial velocity. (C) Use of the model to identify contributions of extrinsic and intrinsic tenase to
factor Xa formation near and far from the activator. (D) Modular decomposition of blood coagulation, where parts of the system responsible for
different aspects of its behavior are shown.86
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activation threshold in the clotting system,86 importance of
spatial TF distribution72 and regulatory roles of TF pathway
inhibitor,76 drug–drug interaction in hemophilia,87 and
others. Recently, a detailed model of spatial thrombin gener-
ation and clot formation consisting of 21 partial differential
equations and three ODEs was used to investigate blood
coagulation sensitivity to coagulation factor deficiencies.88

The authors concluded that the spatially heterogeneous
coagulation system was robust to factor concentration vari-
ation due to combination of local high TF surface, diffusion
control being shared between different active factors, and
early saturated dependence of fibrin clot formation by
thrombin. These studies ultimately led to the proposal of a
modular concept of blood coagulation network (►Fig. 4D).

If phenomenological models can supply us with qualita-
tive behavior of the clotting system, mechanistic models are
often aimed to produce quantitative information. The main
protein of clotting is thrombin, which not only activates
fibrinogen and produces clot, but also regulates most of
the reactions of blood coagulation and activates platelets.
In vitro thrombin generation assay provides time course of
thrombin concentration in the examined sample during
clotting, and this experimental setup is easy for computer
simulations. One of the first mathematical models simulat-
ing the whole system was the model of Kenneth Mann’s
group,82 which used 34 ODEs to describe thrombin genera-
tion by interaction of TF, VII, VIIa, X, IX, II, VIII, V, TF pathway
inhibitor, and antithrombin. Thismodel is still used as a basis
formore complex integratedmodels of thrombin generation,
fibrin formation, and fibrinolysis, also containing several
reactions that are specific to the thrombin generation assay
and can affect the thrombin readout.89,90 Such an approach
was used to simulate effects of plasma dilution, hypother-
mia, and acidosis.70 They found that dilution progressively
reduced the peakof thrombin generation; interestingly, in an
experimental report, moderate hemodilution increased
thrombin generation.91 In these simulations hypothermia
delayed the onset of thrombin generation and increased
thrombin generation (both endogenous thrombin potential
and thrombin peak). Another group used the legacymodel to
describe how changes in blood coagulation factor balance in
human immunodeficiency virus patients shift the hemosta-
sis to hypercoagulation,92 or in patientswith hemophilia C,93

hemophilia A,94 or deep vein thrombosis,95 and what is the
variation of thrombin generation in healthy individuals.96

Although the computer simulations of thrombin generation
often demonstrate the same trends in response to param-
eters’ variations as in vitro experiments, the thorough com-
parison of the outputs can show that the discrepancy in the
in vitro and in silico is still present,97 and it is as high as 30 to
50% of values of thrombin peak, or time to peak. It should be
noted that the thrombin generation assay itself has great
variability,98 and results from different laboratories can vary
up to 20%,99 but even the position of the sample in the
microplate can change the output up to 30%.100

Asideofbloodcoagulation, thefibrin clot lysisprocess is less
extensively studied and simulated. Fibrinolysis is an endpoint
stage of clot existence, and its behavior depends on the clot-

forming process: thestructureof thefibrin clot, definedduring
clot formation, regulates the rate of clot dissolution. Simple
models of fibrinolysis were implemented for investigation of
different aspects of clot dissolution. Models of diffusion and
permeation process during clot lysis demonstrated that pres-
sure-driven permeation is the major mode of transport that
allows for kinetically significant thrombolysis during clinical
situations.74A three-dimensional stochasticmultiscalemodel
of fibrinolysis with a single-fiber cross-section at the micro-
scale and a three-dimensional (3D) fibrin clot at the macro-
scale101 demonstrated that number of tissue plasminogen
activator (tPA) molecules relative to the surface area of the
clot regulated the rate of clot dissolution, explaining the
mechanism by which coarse clots lysed more quickly than
fine clots. The same model was used to investigate the lysis
propagation regime.102 The authors found that the physical
mechanismofplasminactionwas crawling across afiber using
neighbor binding sites, and it coupledwith plasmin-regulated
local concentration of tPA defined the kinetic conditions
necessary for fibrinolysis to proceed as a front.

A combination of a spatially distributed model of clot
formation from Kuprash et al88 and a model of clot lysis
resulted in a set of 32 partial differential equations and three
ordinary differential equations.78 The authors investigated
mechanisms regulating simultaneous clot formation and
dissolution. They found that lysis front propagation followed
front of clot formation with velocity linearly proportional to
the velocity of clotting front, asfibrin formationwas the rate-
limiting reaction.

Besides finding of mechanisms of blood coagulation and
fibrinolysis regulation, mathematical modeling is widely
used for the evaluation of drug action, dose-dependent safety
and efficacy, and pharmacodynamic profiles. In the work of
Shibeko et al103 using a model of factor Xa generation via TF-
dependent and lipid-dependent pathways and a biphasic
pharmacokinetic model of factor VIIa (FVIIa), different mod-
ifications of FVIIa variants were investigated and it was shown
that somepotentmodifications of the rFVIIamoleculemay not
translate into a prolonged hemostatic effect.

Simulation of fibrinolysis in a 3D patient-specific artery
during thrombolytic therapy showed that clot lysis was accel-
erated at higher tPA doses at the expense of a substantial
increase in the risk of intracerebral hemorrhage, which was
supposed to be associated with fibrinogen consumption.104

Mathematical modeling in blood coagulation is a potent
tool for investigation of mechanisms regulating different
aspects of clotting, such as thrombin generation, clot disso-
lution, action of different drugs, used for hypo- and hyper-
coagulation correction, and for thrombolysis. Yet, the direct
translation of in silico results to in vitro/ex vivo setups is
apparently too premature and requires further investiga-
tions of clotting regulating parameters.

Conclusions

• During the last decade, different groups have developed
several approaches to simulate all critical components of
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the hemostatic response including platelet adhesion,
platelet signal transduction, and blood coagulation.

• Even by themselves, these models are being used for
experimental planning and prediction, to get insights
into the regulation of hemostasis and thrombosis, identify
roles of proteins and reactions, select drug targets, and
optimize diagnostic assays that are simpler to mimic real
hemostasis.

• From the technical point of view, these models are being
constantly improved to include more and more essential
elements, corrected mechanisms, and better ways of
simulation. They are already being combined to provide
descriptions of in vivo hemostasis and thrombosis at
different scales.
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