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ABSTRACT

Small molecules frequently mediate symbiotic interactions

between microorganisms and their hosts. Brazil harbors the

highest diversity of insects in the world; however, just re-

cently, efforts have been directed to deciphering the chemical

signals involved in the symbioses of microorganisms and so-

cial insects. The current scenario of natural products research

guided by chemical ecology is discussed in this review. Two

groups of social insects have been prioritized in the studies,

fungus-farming ants and stingless bees, leading to the identi-

fication of natural products involved in defensive and nutri-

tional symbioses. Some of the compounds also present po-

tential pharmaceutical applications as antimicrobials, and this

is likely related to their ecological roles. Microbial symbioses in

termites and wasps are suggested promising sources of bio-

logically active small molecules. Aspects related to public pol-

icies for insect biodiversity preservation are also highlighted.

Chemical Ecology in Insect-microbe Interactions in the Neotropics
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Introduction
Brazil is one of the worldʼs 17 megadiverse countries that host be-
tween 15–20% of the entire worldʼs biological diversity, including
the greatest number of endemic species [1], offering innumerous
research opportunities and sustainable technological develop-
ment. Natural products research in Brazil has been historically fo-
cused on plant-derived compounds and evaluation of their bio-
logical activities [2], with only recent efforts directed to micro-
bial-derived compounds and marine organisms [3–5].

Recent estimates based on DNA sequence information have
shown that microorganisms consist in the highest number of liv-
ing species, most of them yet to be described [6], but there are no
records on the number of microbial species in Brazil. This un-
tapped ecological niche represents a huge potential for natural
products discovery, as suggested by sequencing of environmental
bacterial DNA collected in different biomes [7].
38 Menegatti C et a
Microorganisms are the most ancient form of life on earth and
have established symbiotic interactions with several other orga-
nisms, from mammals to arthropods and plants [8]. Symbiosis in-
volves any intimate species interaction, either positive or nega-
tive, including mutualism, commensalism, and parasitism, as de-
fined by Bary [9]. Indeed, symbioses with microorganisms have
contributed with innovations in eukaryotic evolution [10]. Much
of the communication between microorganisms and between mi-
croorganisms and their environment is based on chemical interac-
tions [11], the subject of research in the interdisciplinary field of
chemical ecology [12]. Deciphering the chemical language be-
tween species is key to understanding how they interact and pro-
vides an opportunity for ecologically-guided natural products dis-
covery for biotechnological purposes.
* These authors contributed equally to this work.
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Insects dominate the known diversity of living organisms. Class
Insecta comprises about 1 million described species and makes up
83.5% of all species in the Phylum Arthropoda [13]. Brazil harbors
the highest diversity of insects in the world [14], but natural prod-
ucts research on insects is mainly focused on pheromones in the
country [15]. As with other organisms, insects have developed a
plethora of interspecies interactions with microorganisms, and
social insects are fascinating examples of multipartite symbiosis.

Eusociality is an evolutionarily advanced level of social organi-
zation nearly confined to insects, especially ants, bees, wasps, and
termites. Eusocial adult insects in a colony belong to different
overlapping generations, care cooperatively for the offspring,
and are divided into reproductive and nonreproductive castes
[16]. Some social insects have also evolved symbiotic mutualistic
interactions with fungi in which nutrient exchange between spe-
cies is the key behind this association. Insects provide food re-
sources–usually plant-derived material difficult to digest–to the
fungi and protect them against opportunistic pathogens. In re-
turn, fungi can supply nutrients and molecules important for in-
sectʼs physiological functions [17,18]. Social insects are particu-
larly attractive for microbial disease agents, since they live in high
populational densities in relatively homeostatic nest environ-
ments and store food resources [19]. To avoid pathogens, social
insects have evolved several strategies, such as grooming, nest
hygiene, and chemical defenses [19,20]. Another defensive strat-
egy of insects is the symbiotic association with bacteria that pro-
duce and secrete biologically active small molecules that are se-
lective against pathogens [20].

The biosynthetic potential of insect-associated microbes
worldwide is covered elsewhere [17,20–22], and here we high-
light some of the work done on the Brazilian biodiversity. The bio-
logical activity of some microbial strains isolated from Brazilian
social insects has been investigated but not exhaustively studied.
These microbial isolates comprise yeasts, proteobacteria, and ac-
tinobacteria, which produce a variety of biologically active small
molecules.
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Natural Products Mediating Microbial
Symbiosis Fungus-Farming Ants

E.O. Wilson, a recognized American biologist, naturalist, and writ-
er, stated in 1975: “There are more species of ants in a square kilo-
meter of Brazilian forest than all the species of primates in the world,
more workers in a single colony of driver ants than all the lions and
elephants in Africa” [23].

Fungus-farming “attine” ants (Formicidae: Myrmicinae: Attini:
Attina) originated in a single ancestral attine in Amazon around
45 million y ago [24]. Approximately 250 species of fungus-farm-
ing ants are found in the “New World”, ranging from North Amer-
ica to South America [25]. Attine ants collect plant and other ma-
terial they forage from the environment to nurture basidiomycete
fungi they cultivate for food. During the evolution of these inter-
actions, the foraged material has been diversified, giving rise to
the so-called “basal” and “highly evolved” agricultural systems,
based on the substrate that the fungal crop is fed [26]. Other mi-
crobes found in this multipartite symbiosis are a specialized path-
Menegatti C et al. Chemical Ecology in… Planta Med 2021; 87: 38–48 | © 2021. Thieme. All rig
ogenic fungus from the genus Escovopsis, which can suppress the
crop fungal cultivar and destroy the ant colony [27], and a symbi-
otic actinobacterium usually belonging to the genus Pseudonocar-
dia, which produces small molecules that selectively inhibit the
pathogenic fungus over the crop fungus [28,29]. Dentigerumy-
cin, produced by Pseudonocardia associated with Apterostigma
ants collected in Central America, was the first selective antifungal
characterized as mediator of the defensive symbiosis in attine ants
(▶ Fig. 1) [30]. Even though there is a reasonable number of pub-
lications examining the chemistry involved in this symbiosis from
attine colonies sampled in Central America [30–34], the potential
of the microbial symbionts from Brazilian attine ants still remains
to be explored.

Some attine ants have their exoskeletons covered by the acti-
nobacteria, whereas others do not show the same obvious associ-
ation. Ants of Atta genus, for instance, do not show specialized
crypts–morphological structures that harbor actinobacteria–in
their bodies. The bacterial symbionts are supposed to be internal-
ized inside antsʼ bodies [35] or even in other places of the colony.
The hypothesis that opportunistic pathogens were inhibited by
microorganisms living in the colony was therefore tested. Differ-
ent parts of Atta sexdens colonies (fungal garden, waste deposit,
and surface of leaves collected by ants) were sampled and re-
sulted in the isolation of 99 yeast strains. These strains had their
inhibitory activities tested against 6 reporter yeast strains and also
against each other. The results showed that 77 strains (78%) in-
hibited the growth of the competing strain. This high number of
active strains pointed toward a role in maintaining the nest micro-
bial community [36]. Investigations were also conducted into the
role of bacterial strains associated with the fungal gardens of Atta
sexdens ants collected in eucalyptus plantations in Rio de Janeiro
state, Brazil. A high number of colonies was found to be associ-
ated with Burkholderia sp. strains, which inhibited different ento-
mopathogenic fungi, such as Metarhizium anisopliae, Beauveria
bassiana, the saprophytic fungus Verticillium lecaniii, and the spe-
cific ant pathogen Escovopsis weberi. Although these strains had
antifungal activity against different fungi, they did not show any
activity against the fungal cultivar. Burkholderia sp. strains were
isolated from 32 out of 57 ant nests (56%), also suggesting an im-
portant ecological role [37].

As well as producing small molecules with defensive roles, Pro-
teobacteria can also fulfill other ecological functions. Serratia mar-
cescens isolated from Atta sexdens rubropilosa colonies produce
volatile pyrazines, including 2,5-dimethylpyrazine (1) and 3-eth-
yl-2,5-dimethylpyrazine (2) (▶ Fig. 2), that are components of
antsʼ trail pheromone [38]. However, the dependence of ants on
the microbial biosynthesis of trail pheromones remains to be elu-
cidated. The microbial involvement in the production of phero-
mones has been recognized for some insects, but more efforts
are needed to experimentally validate connections between the
presence of specific symbionts, changes in the hostʼs chemistry,
and behavioral effects [39].

Leaf-cutter ants start new colonies with queen ants fecundated
during the nuptial flight; however, mortality is extremely high
during the nuptial flight and immediately afterward [24].
A. sexdens rubropilosa queen ants were found to be infected by
the entomopathogenic fungus Aspergillus nomius after nuptial
39hts reserved.



▶ Fig. 1 Ecological relationships between microorganisms and attine ants. Mutualistic interactions are represented by green arrows and red T-bars
represent harmful interactions. Investigations into this system led to the isolation of the antifungal dentigerumycin [30]. Source: Monica Tallarico
Pupo
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flight. The fungus produced aflatoxin B1 (3) and aflatoxin G1 (4)
(▶ Fig. 2) both in situ and in vitro. These compounds may play a
pivotal role in the fungal pathogenicity observed for the Atta
queens [40].

Different from Atta ants, leaf-cutter ants of genus Acromyrmex
usually carry the symbiotic actinobacteria in crypts in their exo-
skeletons. Acromyrmex subterraneus brunneus worker ants at USP-
campus, Piracicaba-SP, Brazil were sampled for the presence of ac-
tinobacteria, leading to the isolation of 20 actinobacteria strains.
Among these bacteria, 17 strains belong to the genus Streptomy-
ces, and the remaining are Pseudonocardia, Kitasatospora, and Pro-
pionicimonas. The majority of Streptomyces isolates inhibited the
growth of the nest pathogen Escovopsis weberi [41]. These studies
suggested that the ant-associated microbes isolated from sam-
ples collected in Brazil–other than Pseudonocardia–produce sec-
ondary metabolites with biological activity; however, chemical
compounds responsible for antimicrobial activities are still elusive.

Actinobacteria can produce compounds showing great chemi-
cal diversity and a large variety of biological activities, and have
evolved protective symbiotic interactions with different orga-
nisms [42]. Indeed, Streptomyces has been proven to be a good
source of antimicrobial defenses in insects [22]. The first com-
pounds from Streptomyces strains associated with fungus-farming
ants in Brazil were the antimycins urauchimycin A (5) and urauchi-
mycin B (6) (▶ Fig. 2) [43], with broad and potent antifungal activ-
ity against medically important Candida strains.

Recently, interdisciplinary research groups in Brazil have been
mainly focused on the characterization of biologically active natu-
ral products frommicrobial symbionts of social insects [44]. Using
an ecological-driven approach, the actinobacterial symbionts of
40 Menegatti C et a
attine ants have been systematically screened against the special-
ized pathogenic fungus Escovopsis and then selected for further
screening against other bacterial, fungal, and protozoan human
pathogens.

The search for symbionts of Acromyrmex subterraneus brunneus
ants, collected at USP-campus, Ribeirão Preto-SP, led to the isola-
tion of Streptomyces chartreusis ICBG377, recovered from the fun-
gal garden. The actinobacterium produces the antibiotic strepta-
zolin (7), its E-isomer (8), strepchazolin A (9), strepchazolin B (10),
and the inorganic compound cyclooctasulfur (11), the active
compound against Escovopsis (▶ Fig. 2) [45]. Compound 11 was
also produced by S. chartreusis ICBG323, isolated from the exo-
skeleton of winged males of Mycocepurus goeldii [45].

The actinobacterium S. puniceus ICBG378, isolated from Acro-
myrmex rugosus rugosus ants, produces griseorhodin A (12) and
griseorhodin C (13), natural products known by their cytotoxic
activity against cancer cell lines [46], and dinactin (14), active
against Escovopsis (▶ Fig. 2) [47]. Dinactin (14) was also active
against Leishmania donovani, one of the etiological agents of leish-
maniasis, a neglected tropical disease that causes thousands of
deaths yearly in developing countries.

Similarly, Cyphomyrmex-associated Streptomyces sp. ICBG292
produced Mer-A2026B (15), piericidin-A1 (16), and nigericin (17)
(▶ Fig. 2), all active against Escovopsis and against intracellular
amastigotes of L. donovani. Compounds 15 and 16 were also iso-
lated from Atta-associated Streptomyces, while 14 and 17 showed
the most potent leishmanicidal activities, with good selectivity in-
dexes [47]. The biological activity of these compounds highlights
the importance of exploring different sources for prospecting
compounds that can help treating human diseases [47].
l. Chemical Ecology in… Planta Med 2021; 87: 38–48 | © 2021. Thieme. All rights reserved.



▶ Fig. 2 Compounds isolated from microbial symbionts of attine ants collected in Brazil.
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The hypothesis that the ant microbiome is a good source for
exploring new medically useful antimicrobial agents was further
reiterated. The isolation of cyphomycin (18) (▶ Fig. 2), a new anti-
fungal polyketide, proved that the Brazilian biodiversity should be
explored in order to find new candidates for the treatment of fun-
gal infections. Cyphomycin (18) was produced by a Cyphomyrmex-
associated Streptomyces strain and showed potent activity against
human fungal pathogens both in vitro and in vivo [22].
Natural Products Mediating Microbial
Symbiosis in Stingless Bees

Although a wide diversity of microorganisms, such as bacteria,
fungi, and yeasts are found to be associated with bees, little is
known about their role as beneficial symbionts [48]. Indeed,
honey bees across the world harbor a rich bacterial community
Menegatti C et al. Chemical Ecology in… Planta Med 2021; 87: 38–48 | © 2021. Thieme. All rig
[49–52]. Lactic acid bacteria (LAB) are frequently isolated from
the guts of honey bees and bumble bees, and it is believed that
this specific microbiota coevolved with their hosts. playing roles
in nutrition and defense against pathogens [53–56].

More information is available regarding microbial pathogens of
honey bees, which span several kingdoms, including the most
damaging threats such as viruses, bacteria, and fungi [57]. Paeni-
bacillus larvae and Melissococcus plutonius, the infective agents of
American and European foulbrood diseases, respectively, are ma-
jor bacterial threats to honey bees (Apis species) [57]. The Ameri-
can foulbrood disease (AFB) is widespread in honey bee larvae [58,
59] and drastically impacts the apiculture and the pollination of
crops and wild plants [60]. The long-lived spores produced by
the bacterium are infectious only for larvae, especially in early
larval stages [61]. Burning the infected colonies is one usual
treatment for AFB [62]. Antibiotics such as oxytetracycline are
used in some countries for prevention and treatment of contami-
41hts reserved.
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nated colonies still, but this approach is not effective against
spores [63–67]. Other problems can be caused using antibiotics
as their chemical residues accumulate in honey, reducing the lon-
gevity of the bees and selecting resistant P. larvae strains [61,68].
The European foulbrood disease is caused by the globally distrib-
uted Gram-positive, non-spore-forming bacterium M. plutonius
[69]. Ingestion of larval food contaminated with M. plutonius
causes infection in larvae. Bumble bees (Bombus terrestris), impor-
tant pollinators of the northern hemisphere, are colonized by the
virulent parasite trypanosomatid Crithidia bombi (Trypanosomati-
dae, Zoomastigophorea) [70]. These infections have a variety of
consequences, such as the mortality of the colonies.

While microbial diseases are better understood for honey bees,
little is known about microbial diseases affecting stingless bees.
Stingless bees (Apidae: Meliponini) are a large group of bees with
more than 500 species described, around 300 of them occur in
Brazil [71]. Although A. mellifera is originally from Africa, this spe-
cies is an important pollinator widespread around the world [72].
The global distribution of honey bees favors their microbial path-
ogens to spillover stingless bees native to tropical and subtropical
regions [73]. Indeed, some honey bee pathogens already de-
tected in stingless bees include the disease-causing bacterium
Lysinibacillus sphaericus in Australia [74], the acute bee paralysis vi-
rus (ABPV) in Brazil [75], the bacterium M. plutonius in Brazil [76],
and the fungus Nosema ceranae in laboratory colonies [73]. There-
fore, an ecological approach to study bacterial symbionts of sting-
less bees involved in defensive responses can be based on micro-
bial pathogens of honey bees and bumble bees.

Research has been directed toward the role of the associated
microbiota in protecting bees against pathogens. LAB have a po-
tential role in controlling the bacterial pathogens causing Ameri-
can and European foulbrood diseases [77]. Stingless bees from
different geographical regions also carry LAB [78] that might pos-
sess similar functions. Bacteriocin-like compounds, active against
P. larvae were also identified from LAB isolated from honey bees in
Argentina [79]. Actinobacteria have also been isolated from sting-
less bees from other tropical and subtropical regions. Antibiotic-
producing Streptomyces spp. were isolated from the stingless bee
Tetragonisca angustula in Costa Rica, showing antimicrobial activ-
ities against a variety of human pathogens [80]. Actinobacteria
strains active against P. larvae and M. plutonius were isolated from
colonies of honey bees (A. mellifera, A. cerana, A. florae) and sting-
less bees (Trigona laeviceps and T. fuscobalteata) in Thailand [81].
However, the small molecules mediating these defensive symbio-
ses have not been comprehensively studied.

The first unprecedented example of nutritional symbiosis in
stingless bees is the Brazilian bee Scaptotrigona depilis, which is
surrounded by a complex microbial community. S. depilis culti-
vates a fungus of the genus Zygosaccharomyces in the brood cell,
which provides ergosterol (19) (▶ Fig. 3) as a precursor for ecdys-
teroid biosynthesis and, consequently, for proper larval develop-
ment and metamorphosis [82,83]. Two additional fungi are also
active in the cerumen of brood cells, Candida sp. and Monascus
ruber, which modulate Zygosaccharomyces sp. growth. Candida
sp. produces volatile alcohols such as ethanol and isoamyl alcohol
that stimulate the growth of Zygosaccharomyces sp., while Monas-
cus ruber inhibits Zygosaccharomyces sp. and Candida sp. by the
42 Menegatti C et a
production of lovastatin (20) and monascin (21), respectively
(▶ Fig. 3) [84]. Fungi of the genusMonascus were also found in as-
sociation with other species of stingless bees in Brazil, but their
chemical-ecological functions remain unknown [85]. The larvae
of S. depilis also engage in associations with microbes. Genome
analyses of the Bacillus sp. SDLI1 isolated from S. depilis larvae in-
dicated the presence of biosynthetic gene clusters that encode
the production of a variety of antibiotics, suggesting a bacterial
defensive symbiosis [86]. Bacillus spp. have been commonly asso-
ciated with honey beesʼ larvae and inhibit P. larvae [87,88]. The
isolation of Bacillus DNA in fossils showed close phylogenetic rela-
tionships with strains typically isolated from stingless bees, which
could provide information about the evolution of microbe-insect
symbiosis [89].

The stingless bee Melipona scutellaris inhabits in Northeast Bra-
zil and engages in a relationship with various bacteria. The ecolog-
ical-driven approach of bioassays against entomopathogens led to
the identification of some bacterial strains as possible defensive
symbionts and their chemical signals. The bacterium Paenibacillus
polymyxa was isolated from the larval food of M. scutellaris and
produces (L)-(−)-phenyllactic acid (22) and a family of 9 lipodepsi-
peptides known as fusaricidins, including the major compounds
fusaricidin A (23) and fusaricidin B (24) (▶ Fig. 3), active against
the entomopathogenic fungus B. bassiana and bacterium P. larvae.
Interestingly, fusaricidins 23 and 24 were also detected directly in
the larval food of different sampled colonies, suggesting a benefi-
cial defensive role against pathogens [90]. AdultM. scutellaris bees
also carry several actinobacteria in their bodies. Streptomyces sp.
ICBG1323 and Micromonospora sp. ICBG1321 were isolated from
nurse and forager bees, respectively. Two families of structurally
complex bioactive polyketides were isolated from the associated
strains: lobophorins (25–28) from Streptomyces sp. ICBG1323
and anthracyclines from Micromonospora sp. ICBG132 (29–39),
including the rare quinocyclines 29–34 and the novel compound
39 (▶ Fig. 3). The compounds presented variable levels of activ-
ities against P. larvae. Compounds 28 and 30 showed the higher
antibacterial activity, better than the control antibiotics [91].
Finally, two new compounds were isolated from Streptomyces sp.
ICBG1318 strain in association with M. scutellaris nurse bees. The
novel cyclodepsipeptides named meliponamycin A (40) and
meliponamycin B (41) (▶ Fig. 3) were strongly active against P. lar-
vae and human pathogens, such as Staphylococcus aureus and
L. infantum [92].

The examples highlight that more research on the stingless
bees-associated microbiota is essential to enhance the current
knowledge of the molecular signals involved in these symbiotic in-
teractions. This knowledge might contribute to design policies for
the preservation of these important pollinators of native flora and
agricultural crops.
Microbial Symbiosis in Wasps
Previous research efforts on digger wasps of the genus Philanthus
(beewolves; Hymenoptera, Crabronidae), which consists of more
than 100 species widespread in Europe, Africa, Asia, and North
America, showed association with the symbiotic actinobacteria
Candidatus Streptomyces philanthi [93,94]. The symbionts are cul-
l. Chemical Ecology in… Planta Med 2021; 87: 38–48 | © 2021. Thieme. All rights reserved.



▶ Fig. 3 Compounds isolated from microbial symbionts of Brazilian stingless bees.
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tivated in specialized antennal gland reservoirs and transferred to
the brood cells where they produce antibiotics such as strepto-
chlorin and piericidin derivatives responsible for protecting the
waspsʼ larvae against pathogens [95,96]. The Brazilian digger
wasps Trachypus boharti also present bacteria in the antennal
gland reservoirs. Gene sequences revealed that among all anten-
nal symbionts described, the Brazilian wasps cultivate the most
distantly related actinobacteria [97]. However, the chemistry be-
hind this protective symbiosis remains to be uncovered.

Another example of wasp-microbe symbiosis is established be-
tween the parasitic wasp Asobara tabida with the bacterium Wol-
bachia. The bacterium is vertically transmitted via the eggs by
wasps and plays a fundamental role in oogenesis completion
[98]. The treatment with antibiotics to eliminate Wolbachia found
Menegatti C et al. Chemical Ecology in… Planta Med 2021; 87: 38–48 | © 2021. Thieme. All rig
that aposymbiotic females of A. tabida are reproductively sterile,
being unable to produce viable offspring [99]. An intense apopto-
sis process is responsible for the absence of egg production, and
there is evidence that Wolbachia inhibits the programmed cell
death by the disruption of cellular physiology of the host [100].
The symbiosis with the bacterium Wolbachia was found for wasps
of the genus Encarsia; meanwhile, another bacterium described as
“Encarsia bacterium” was found to be associated with a popula-
tion of Encarsia wasps, including E. pergandiella collected in Brazil.
The bacterium is related to parthenogenesis [101]. The symbiont
“Candidatus Cardinium hertigii” associated with Encarsia wasps
from Brazil and USA is also linked to reproductive alterations in
the host [102].
43hts reserved.



▶ Fig. 4 Compounds isolated from microbial symbionts of termites.
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Parasitoid wasps lay their eggs into other arthropods who are
hosts for wasp larval development [103]. Braconid wasps engaged
in an ancient relationship with polydnavirus that suppress host de-
fense mechanisms and permit the larval development [104–106].
This symbiosis is so old (about 70 million y) that the genes in-
volved in viral replication have been incorporated into the wasp
genome [107].

Invasive wood wasps Sirex noctilio collected in USA are associ-
ated with Streptomyces strains with specific enzymatic activities
responsible for degrading cellulose, which is used by the insect as
source of energy [108]. Wood wasps still hold a close relationship
with a fungal symbiont Amylostereum chailletii that feeds wasp lar-
vae, providing them with digestive enzymes [109].

Very few efforts have been pursued on revealing the chemical
signaling in interactions between microbes and wasps in Brazil.
The country harbors the richest fauna of social wasps (Polistinae)
in the world, with more than 300 species, 104 of them endemic
from Brazil [110], offering several opportunities for chemical ecol-
ogy based natural products discovery.
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Microbial Symbiosis in Termites
Although fungus-farming ants and fungus-growing termites
share behavioral similarities, and both seem to rely on the pres-
ence of symbiotic actinobacteria to chemically defend their nests
against fungal pathogens [54, 111], they do not share a common
ancestor with the same characteristics [112]. Moreover, these in-
sects differ from each other in the geographical distribution.
While attine ants originated and are found in the “New World”,
fungus growing Macrotermitinae termites (Termitidae: Macroter-
mitinae) originated in Africa and comprise about 330 species dis-
tributed in the “Old World”, including Africa and Asia [113]. Mac-
rotermitinae termites are subdivided into 11 genera [114].

Brazil houses around 300 species of termites belonging to the
families Kalotermitidae, Rhinotermitidae, Serritermitidae, and
Termitidae [115]. Termites contribute to structure and composi-
tion of soils by efficiently degrading biomass with the aid of resi-
44 Menegatti C et a
dent gut microbiota, so most of the research in Brazil has focused
on the enzymatic potential of termite-associated microbiota
[116]. Termite microbiota might also have a contribution in de-
fensive symbiosis by the production of secondary metabolites. In-
deed, two Streptomyces strains from termite mounds collected in
Bahia State showed percentages of inhibition above 98% against
bovine viral diarrhea virus (BVDV), but the active compound has
not been identified [117].

There are some examples of natural products produced by ac-
tinobacteria in association with African fungus-growing termites
[118–122]. Amycolatopsis sp. produced macrotermycins A–D
(42–45) (▶ Fig. 4). Besides the antifungal ecological role, these
4 macrolactams presented antibacterial activity against S. aureus
[123]. The polyketide fridamycin A (46) (▶ Fig. 4) was isolated
from the termite-associated Actinomadura sp.; it demonstrated
glucose uptake stimulation and could be an option for type 2 dia-
betes therapeutics [124]. Microtermolides A (47) and B (48)
(▶ Fig. 4) were isolated from a fungus-growing termite-associ-
ated Streptomyces sp. [125,126]. Both compounds are depsipepti-
des; moreover, microtermolide B is a rare linear depsipeptide and
seems to be the first one of this class produced by a Streptomyces
strain. The lack of extensive work on termite-associated actino-
bacteria in Brazil, however, can be due to the absence of fungus-
growing termites in this region of the world [127]. Brazilian ter-
mites, as wasps, are eusocial insects. Even though there is not
much work on Brazilian termites, this system seems promising
since their colonies are susceptible to parasitic pressure, and pre-
vious works have demonstrated the beneficial association be-
tween social insects and antibiotic-producing microbes.
Conclusion
Brazil harbors an impressive reservoir of genetic resources in dif-
ferent biomes, including the highest number of known insects in
the world and an undescribed microbial diversity. The chemistry
of microbial natural products and chemical ecology of microbial
symbiosis are complementary research fields in their early days in
l. Chemical Ecology in… Planta Med 2021; 87: 38–48 | © 2021. Thieme. All rights reserved.
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the country. Two decades have passed since the publication of the
first natural product from a microbial source [128], and 7 y since
the first report on natural products mediating microbial interac-
tions [129] in Brazil.

The chemistry involved in interspecies interactions between
insects and microbes remains largely to be unveiled. The exam-
ples showed here are just a glimpse of the chemodiversity in-
volved in nutritional and defensive microbial symbiosis in some
species of attine ants and stingless bees in Brazil. Several other
species of these insects should be investigated, as well as other
Brazilian social insects such as termites and wasps.

The understanding of how species interact in nature is instru-
mental to design sustainable approaches for their uses. Besides
improving the knowledge about interspecies interactions, the
chemical ecology approach to studying insect-microbe symbiosis
might lead to the identification of biologically active compounds
with privileged scaffolds for biotechnological development,
mainly as agrochemicals and pharmaceuticals. The huge biodiver-
sity remaining in Brazil potentially encodes useful products to be
developed based on sustainable practices. Efforts of multidiscipli-
nary research groups in chemistry, microbiology, molecular biol-
ogy, entomology, and pharmacology are instrumental to achieve
such results.

Not less important is the regular and prioritized governmental
financial support for research in the field. The biodiversity of in-
sects has declined worldwide; therefore, researchers and govern-
ment in Brazil might act synergistically. According to Sánchez-
Bayoa & Wyckhuys [130], the main drivers of insect decline are:
i) habitat loss and conversion to intensive agriculture and urban-
ization; ii) pollution, mainly that by synthetic pesticides and fertil-
izers; iii) biological factors, including pathogens and introduced
species; and iv) climate change. It is out of scope to discuss each
one of those factors in this article but needless to explain that all
of them occur in Brazil.

Strong public policies are urgently needed to protect Brazilian
biodiversity. Specifically, it is important to consider the preserva-
tion of native insects and, consequently, the benefits they pro-
vide–in association with resident microbes–in the structure and
functioning of the ecosystems.
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