Handchir Mikrochir Plast Chir 2020; 52(05): 435-440
DOI: 10.1055/a-1238-2688
Übersichtsarbeit

Kahnbeinpseudarthrose: computerassistierte virtuelle Planung der Rekonstruktion

3D analysis and computer assisted reconstruction for scaphoid non-union
Ladislav Nagy
Uniklinik Balgrist, Abteilung Handchirurgie, Zürich
› Author Affiliations

Zusammenfassung

Die eigentümliche Form des Kahnbeins ist eine Herausforderung für unser räumliches Vorstellungsvermögen. Deshalb bietet gerade bei der Rekonstruktion von Kahnbeinpseudarthrosen die Computer-Unterstützung unvergleichliche Vorteile: Sie ermöglicht die Erstellung eines echten 3-dimensionalen interaktiven Modells aus CTs, das manipuliert, bearbeitet und bei Bedarf sogar physisch gedruckt werden kann. Der Vergleich mit dem gesunden Kahnbein der Gegenseite analysiert die exakte Fehlstellung und erlaubt damit die Planung einer präzis-anatomischen Wiederherstellung der Kahnbeinform. Schließlich erleichtern computergenerierte patientenspezifischen Instrumente intraoperativ die genaue Umsetzung der Planung. Dieses Vorgehen ermöglicht es, das Kahnbein wesentlich exakter als zuvor wiederherzustellen und damit auch zuverlässiger die gestörte Handgelenkskinematik zu normalisieren. Unterdessen haben wir diese Technik bei der Rekonstruktion von über 50 fehlgestellten Kahnbeinpseudarthrosen erfolgreich angewandt.

Abstract

The odd shape of the scaphoid is a challenge to our spatial sense. Computer assistance is of an unmatched value when reconstructing a non-united scaphoid: From CT data a true 3-D-model can be generated, fully interactive; thus it can be moved, manipulated and of course also printed for hands-on experience. Comparing the virtual 3-D-models of the nonunion with the healthy contralateral scaphoid, the exact amount of the deformity is calculated which allows for the planning of an anatomically precise reconstruction of the scaphoid shape. Finally, computer generated patient specific instruments will facilitate the implementation of this planning intraoperatively. This proceeding enables us to reconstruct the non-united scaphoid markedly more accurately and with this reliably normalize wrist kinematics. Meanwhile we have applied this technique successfully in more than 50 cases of scaphoid-nonunions presenting with significant deformity.



Publication History

Received: 29 July 2020

Accepted: 30 July 2020

Article published online:
29 September 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Fisk GR. An overview of injuries of the wrist. Clin Orthop Rel Res 1980; 149: 137-144
  • 2 Tsuyuguchi Y, Murase T, Hidaka N. et al. Anterior wedge-shaped bone graft for old scaphoid fratures or non-unions. An analysis of relevant carpal alignment. J Hand Surg Br 1995; 20: 194-200
  • 3 Megerle K, Harenberg PS, Germann G. et al. Scaphoid morphology and clinical outcomes in scaphoid reconstructions. Injury 2012; 43: 306-310
  • 4 Mathoulin CL, Arianni M. Treatment of the scaphoid humpback-deformity – is correction of the dorsal intercalated segment instability deformity critical?. J Hand Surg Eur Vol 2018; 43: 13-23
  • 5 Burgess RC. The effect of a simulated scaphoid malunion on wrist motion. J Hand Surg Am 1987; 12: 774-776
  • 6 Ruby LK, Stinson J, Belsky MR. The natural history of scaphoid non-union. J Bone Joint Surg 1985; 67-A: 428-432
  • 7 Mack GR, Bosse MJ, Gelberman RH. et al. The natural history of scaphoid non-union. J Bone Joint Surg 1984; 66-A: 504-509
  • 8 Amadio PC, Berquist TH, Smith DK. et al. Scaphoid malunion. J Hand Surg Am 1989; 14: 679-687
  • 9 Sanders WE. Evaluation of the humpback scaphoid by computed tomography in the longitudinal axial plane of the scaphoid. J Hand Surg Am 1988; 13: 182-187
  • 10 Nakamura R, Imaeda T, Horii E. et al. Analysis of scaphoid fracture displacement by three-dimensional computed tomography. J Hand Surg Am 1991; 16: 485-492
  • 11 Watson HK, Ballet FL. The SLAC wrist: scapholunate advanced collapse pattern of degenerative arthritis. J Hand Surg Am 1984; 9: 358-365
  • 12 Vender MI, Watson HK, Wiener BD. et al. Degenerative change in symptomatic scaphoid nonunion. J Hand Surg Am 1987; 12: 514-519
  • 13 Fernandez DL. A technique for anterior wedge-shaped grafts for scaphoid nonunions with carpal instablity. J Hand Surg Am 1984; 9: 733-737
  • 14 Miyake J, Murase T, Yamanaka Y. et al. Comparison of three dimensional and radiographic measurements in the analysis of distal radius malunion. J Hand Surg Eur Vol 2013; 38: 133-143
  • 15 Desai VV, Davis TRC, Barton NJ. The prognostic value and reproducibility of the radiological features of the fractured scaphoid. J Hand Surg Br 1999; 24: 586-590
  • 16 Compson JP. The anatomy of acute scaphoid fracture: a three-dimensional analysis of patterns. J Bone Joint Surg Br 1998; 80: 218-224
  • 17 Belsole RJ, DR H, Llewellyn JA. et al. Computed analyses of the pathomechanics of scaphoid waist nonunions. J Hand Surg Am 1991; 16: 899-906
  • 18 Jupiter JB, Ruder J, Roth DA. Computer-generated bone models in the planning of osteotomy of multidirectional distal radius malunions. J Hand Surg Am 1992; 17: 406-415
  • 19 Letta C, Schweizer A, Fürstahl P. Quantification of controlateral differences of the scaphoid: A comparison of bone geometry in three dimensions. Anatomy Res Int 2014; 2014
  • 20 ten Berg PWL, Dobbe JGG, Strackee SD. et al. Three-dimensional assessment of bilateral symmetry of the scaphoid: An anatomic study. Bio Med Res Int 2015; 2015
  • 21 Murase T, Oka K, Moritomo H. et al. Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 2008; 90: 2375-2389
  • 22 Schweizer A, Furnstahl P, Nagy L. Three-dimensional computed tomographic analysis of 11 scaphoid waist nonunions. J Hand Surg Am 2012; 37: 1151-1158
  • 23 Oka K, Moritomo H, Murase T. et al. Patterns of carpal deformity in scaphois nonunion: a 3-dimensional and quantitative analysis. J Hand Surg Am 2005; 30: 1136-1144
  • 24 Athwal GS, Ellis RE, Small CF. et al. Computer-assisted distal radius osteotomy. J Hand Surg Am 2003; 28: 951-958
  • 25 Bain GI, Bennett JD, MacDermid JC. et al. Measurement of the scaphoid humpback deformity using longitudinal computed tomography: intra- and interobserver variability using various measurement techniques. J Hand Surg Am 1998; 23: 76-81
  • 26 Ring D, Patterson JD, Levitz S. et al. Both scanning plane and observer affect measurements of scaphoid deformity. J Hand Surg Am 2005; 30: 696-701
  • 27 Oka K, Moritomo H, Goto A. et al. Corrective osteotomy for malunited intra-articular fracture of the distal radius usin a custom-made surgical guide based on three-dimensional computer simulation: case report. J Hand Surg Am 2008; 33: 835-840
  • 28 Vlachopoulos L, Schweizer a, Graf M. et al. Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskeletal Disorders 2015; 16: 336-344