Synlett 2021; 32(07): 641-646
DOI: 10.1055/a-1306-3228
synpacts

C–O Bond Activation as a Strategy in Palladium-Catalyzed Cross-Coupling

Joseph Becica
,
We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada, the New Frontiers in Research Fund (NFRF), and the University of Victoria for general operating funds, as well as the Canadian Foundation for Innovation (CFI) and British Columbia Knowledge Development Fund (BCKDF) for infrastructure funding.


Abstract

The activation of strong C–O bonds in cross-coupling catalysis can open up new oxygenate-based feedstocks and building blocks for complex-molecule synthesis. Although Ni catalysis has been the major focus for cross-coupling of carboxylate-based electrophiles, we recently demonstrated that palladium catalyzes not only difficult C–O oxidative additions but also Suzuki-type cross-couplings of alkenyl carboxylates under mild conditions. We propose that, depending on the reaction conditions, either a typical Pd(0)/(II) mechanism or a redox-neutral Pd(II)-only mechanism can operate. In the latter pathway, C–C bond formation occurs through carbopalladation of the alkene, and C–O cleavage by β-carboxyl elimination.

1 Introduction

2 A Mechanistic Challenge: Activating Strong C–O Bonds

3 Exploiting Vinylogy for C–Cl and C–O Oxidative Additions

4 An Alternative Mechanism for Efficient Cross-Coupling Catalysis

5 Conclusions and Outlook



Publication History

Received: 31 October 2020

Accepted: 09 November 2020

Accepted Manuscript online:
09 November 2020

Article published online:
02 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
  • 2 Heck RF. Acc. Chem. Res. 1979; 12: 146
  • 3 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 4 Negishi E.-i. J. Organomet. Chem. 2002; 653: 34
  • 5 Buchwald SL, Hartwig JF. Isr. J. Chem. 2020; 60: 177
  • 6 Labinger JA. Organometallics 2015; 34: 4784
  • 7 Stille JK, Lau KS. Y. Acc. Chem. Res. 1977; 10: 434
  • 8 Senn HM, Ziegler T. Organometallics 2004; 23: 2980
  • 9 Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 10 Fu GC. Acc. Chem. Res. 2008; 41: 1555
  • 11 Mitchell EA, Jessop PG, Baird MC. Organometallics 2009; 28: 6732
  • 12 So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
  • 13 Niemeyer ZL, Milo A, Hickey DP, Sigman MS. Nat. Chem. 2016; 8: 610
  • 14 Reeves EK, Humke JN, Neufeldt SR. J. Org. Chem. 2019; 84: 11799
  • 15 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 16 Ananikov VP. ACS Catal. 2015; 5: 1964
  • 17 Bajo S, Laidlaw G, Kennedy AR, Sproules S, Nelson DJ. Organometallics 2017; 36: 1662 ; corrigendum: Organometallics 2017, 36, 1880
  • 18 Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025-017-0025 DOI: 10.1038/s41570.
  • 19 Hooker LV, Neufeldt SR. Tetrahedron 2018; 74: 6717
  • 20 Russell JE. A, Entz ED, Joyce IM, Neufeldt SR. ACS Catal. 2019; 9: 3304
  • 21 Entz ED, Russell JE. A, Hooker LV, Neufeldt SR. J. Am. Chem. Soc. 2020; 142: 15454
  • 22 Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
  • 23 Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
  • 24 Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
  • 25 Mesganaw T, Garg NK. Org. Process Res. Dev. 2013; 17: 29
  • 26 Tobisu M, Chatani N. Top. Curr. Chem. 2016; 374: 41
  • 27 Chen Z, So CM. Org. Lett. 2020; 22: 3879
  • 28 Becica J, Gaube G, Sabbers WA, Leitch DC. Dalton Trans. 2020; 49: 16067
  • 29 Becica J, Heath OR. J, Zheng CH. M, Leitch DC. Angew. Chem. Int. Ed. 2020; 59: 17277
  • 30 Ishizu J, Yamamoto T, Yamamoto A. Chem. Lett. 1976; 5: 1091
  • 31 Sengupta S, Leite M, Raslan DS, Quesnelle C, Snieckus V. J. Org. Chem. 1992; 57: 4066
  • 32 Quasdorf KW, Tian X, Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
  • 33 Guan B.-T, Wang Y, Li B.-J, Yu D.-G, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
  • 34 Li B.-J, Li Y.-Z, Lu X.-Y, Liu J, Guan B.-T, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 10124
  • 35 Boit TB, Bulger AS, Dander JE, Garg NK. ACS Catal. 2020; 10: 12109
  • 36 Kakino R, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 2001; 74: 371
  • 37 Tatamidani H, Kakiuchi F, Chatani N. Org. Lett. 2004; 6: 3597
  • 38 Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
  • 39 Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
  • 40 Dardir AH, Melvin PR, Davis RM, Hazari N, Mohadjer Beromi M. J. Org. Chem. 2018; 83: 469
  • 41 Buchspies J, Szostak M. Catalysts 2019; 9: 53
  • 42 Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
  • 43 Correa A, Cornella J, Martin R. Angew. Chem. Int. Ed. 2013; 52: 1878
  • 44 Guo L, Rueping M. Acc. Chem. Res. 2018; 51: 1185
  • 45 Okita T, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 3132
  • 46 Li Z, Zhang S.-L, Fu Y, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 8815
  • 47 Muto K, Yamaguchi J, Lei A, Itami K. J. Am. Chem. Soc. 2013; 135: 16384
  • 48 Hong X, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 2017
  • 49 Hayler JD, Leahy DK, Simmons EM. Organometallics 2019; 38: 36
  • 50 Cooper AK, Burton PM, Nelson DJ. Synthesis 2020; 52: 565
  • 51 Dombrowski AW, Gesmundo NJ, Aguirre AL, Sarris KA, Young JM, Bogdan AR, Martin MC, Gedeon S, Wang Y. ACS Med. Chem. Lett. 2020; 11: 597
  • 52 Fuson RC. Chem. Rev. 1935; 16: 1
  • 53 Kaplan JM, Hruszkewycz DP, Strambeanu II, Nunn CJ, VanGelder KF, Dunn AL, Wozniak DI, Dobereiner GE, Leitch DC. Organometallics 2019; 38: 85
  • 54 Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 8460
  • 55 Watson DA, Fan X, Buchwald SL. J. Org. Chem. 2008; 73: 7096
  • 56 Wang JY, Strom AE, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 7979
  • 57 Allen CL, Leitch DC, Anson MS, Zajac MA. Nat. Catal. 2019; 2: 2
  • 58 Mennen SM, Alhambra C, Allen CL, Barberis M, Berritt S, Brandt TA, Campbell AD, Castañón J, Cherney AH, Christensen M, Damon DB, de Diego EJ, García-Cerrada S, García-Losada P, Haro R, Janey J, Leitch DC, Li L, Liu F, Lobben PC, MacMillan DW. C, Magano J, McInturff E, Monfette S, Post RJ, Schultz D, Sitter BJ, Stevens JM, Strambeanu II, Twilton J, Wang K, Zajac MA. Org. Process Res. Dev. 2019; 23: 1213
  • 59 Li B.-J, Xu L, Wu Z.-H, Guan B.-T, Sun C.-L, Wang B.-Q, Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656
  • 60 Moselage M, Sauermann N, Richter SC, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
  • 61 Gärtner D, Stein AL, Grupe S, Arp J, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545
  • 62 Li J, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 11436
  • 63 Li J, Ren Q, Cheng X, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2019; 141: 18127
  • 64 Sun C.-L, Wang Y, Zhou X, Wu Z.-H, Li B.-J, Guan B.-T, Shi Z.-J. Chem. Eur. J. 2010; 16: 5844
  • 65 Yu J.-Y, Kuwano R. Angew. Chem. Int. Ed. 2009; 48: 7217
  • 66 Lee HW, Kwong FY. Synlett 2009; 3151
  • 67 Lindh J, Sävmarker J, Nilsson P, Sjöberg PJ. R, Larhed M. Chem. Eur. J. 2009; 15: 4630
  • 68 Reina A, Krachko T, Onida K, Bouyssi D, Jeanneau E, Monteiro N, Amgoune A. ACS Catal. 2020; 10: 2189
  • 69 Thomas AA, Denmark SE. Science 2016; 352: 329
  • 70 Braga AA. C, Morgon NH, Ujaque G, Maseras F. J. Am. Chem. Soc. 2005; 127: 9298
  • 71 Lin S, Lu X. Org. Lett. 2010; 12: 2536
  • 72 Kikushima K, Holder JC, Gatti M, Stoltz BM. J. Am. Chem. Soc. 2011; 133: 6902
  • 73 Holder JC, Zou L, Marziale AN, Liu P, Lan Y, Gatti M, Kikushima K, Houk KN, Stoltz BM. J. Am. Chem. Soc. 2013; 135: 14996
  • 74 Shockley SE, Holder JC, Stoltz BM. Org. Process Res. Dev. 2015; 19: 974
  • 75 Ruan J, Li X, Saidi O, Xiao J. J. Am. Chem. Soc. 2008; 130: 2424
  • 76 Lee A.-L. Org. Biomol. Chem. 2016; 14: 5357
  • 77 Wakioka M, Nakamura Y, Montgomery M, Ozawa F. Organometallics 2015; 34: 198