Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2021; 31(04): 251-255
DOI: 10.1055/a-1333-3638
Original Article

Muscle Strength Deficit though Intact Proprioception after Lateral Ankle Sprain without Persistent Instability

Propriozeptions- und Muskelkraftdefizite bei lateraler Verstauchung des Sprunggelenks
Adel M. Madkhali
1   Department of Medical Rehabilitation, Abu Arish General Hospital, Jazan, Saudi Arabia
,
Shibili Nuhmani
2   College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
› Author Affiliations
Source of Funding: This research did not receive any specific grant from funding agencies in public, commercial, or not-for-profit sectors.

Abstract

Background Lateral ankle sprain is one of the most common injuries in competitive sports. Previous studies which investigated muscle strength and proprioception (joint position sense) focused on subjects who sustained ankle sprain with instability. It is also important to investigate strength deficits and proprioception in subjects with a history of ankle sprain without instability. Therefore the aim of the study is to investigate proprioception and muscle strength deficits in athletes with lateral ankle sprain.

Methods Twenty-four male athletes with a history of lateral ankle sprain and 24 age-matched controls (mean age of 22.42±4.13 years, mean height of 173±5.73 cm, and mean weight of 71.20±7.55 Kg) participated in this cross-sectional study. Peak torque and peak torque ratio at speeds of 30 and 120°/s for concentric and eccentric ankle inversion/eversion were evaluated using an isokinetic dynamometer. The joint position sense of the ankle joint was evaluated using an active angle reproduction test.

Result Peak torque produced was significantly less in subjects with history of ankle sprain in concentric inversion 30°/s(t(47)=4.11; p=0.000, Cohen’s d=1.29), concentric inversion 120°/s (t(47)=3.01; p=0.006, Cohen’s d=1.13), concentric eversion 30°/s (t(47)=3.85; p=0.001, Cohen’s d=1.24) and concentric eversion 120°/s (t(47)=3.15; p=0.005, Cohen’s d=1.09). At the same time there was no significant difference observed in eccentric eversion peak torque in both speed (eccentric eversion 30°/s p=0.079; eccentric eversion 120°/s p=0.867) between experimental and control group. No significant difference was found in the joint position sense in the maximal active inversion −5° position (p=0.312) and the 15° inversion position (P=0.386) between both group.

Conclusion The study’s results reported a significantly less peak torque of invertors and evertors during concentric movements in athletes with history of ankle sprain. At the same time, no significant difference reported in the evertor/invertor peak torque ratio, and active joint position sense between the 2 groups.

Zusammenfassung

Hintergrund Die Distorsion des oberen Sprunggelenks ist eine der häufigsten Verletzungen im Leistungssport. In früheren Studien zu Muskelkraft und Propriozeption der Gelenkposition standen Patienten im Fokus, die eine Distorsion des Sprunggelenks mit nachfolgender Instabilität erlitten hatten. Wichtig ist jedoch auch die Untersuchung von Kraftdefiziten und Propriozeption bei Personen mit einer Distorsion des Sprunggelenks ohne nachfolgende Instabilität. Ziel dieser Studie ist es daher, Propriozeption und Muskelkraftdefizite bei Sportlern nach einer Distorsion des Sprunggelenks zu untersuchen.

Methoden Vierundzwanzig Leistungssportler mit einer Distorsion des Sprunggelenks in der Anamnese und 24 altersgleiche Kontrollpersonen (mittleres Alter 22,42 ± 4,13 Jahre, mittlere Größe 173±5,73 cm und mittleres Gewicht 71,20±7,55 kg) nahmen an dieser Querschnittsstudie teil. Spitzendrehmoment und Spitzendrehmomentverhältnis bei Geschwindigkeiten von 30 und 120°/s für konzentrische und exzentrische Sprunggelenkinversion/-eversion wurden mit einem isokinetischen Dynamometer ausgewertet. Die Propriozeption der Gelenkposition des Sprunggelenks wurde mit einem aktiven Winkelwiedergabetest ausgewertet.

Ergebnis Das erzeugte Spitzendrehmoment war signifikant geringer bei Personen mit einer Distorsion des Sprunggelenks in der Anamnese bei konzentrischer Inversion 30°/s(t(47)=4,11; p=0,000, Cohens d=1,29), konzentrischer Inversion 120°/s (t(47)=3,01; p=0,006, Cohens d=1,13), konzentrisches Drehmoment 30°/s (t(47)=3,85; p=0,001, Cohens d=1,24) und konzentrisches Drehmoment 120°/s (t(47)=3,15; p=0,005, Cohen‘s d=1,09). Gleichzeitig wurde kein signifikanter Unterschied im Spitzen-Drehmoment des exzentrischen Drehmoments in beiden Drehzahlen (exzentrische Eversion 30°/s p=0,079; exzentrische Eversion 120°/s p=0,867) zwischen Prüf- und Kontrollgruppe beobachtet. Es wurde kein signifikanter Unterschied der Propriozeption der Gelenkposition in der maximalen aktiven Inversionsposition −5° (p=0,312) und der 15° Inversionsposition (P=0,386) zwischen beiden Gruppen festgestellt.

Schlussfolgerung Die Ergebnisse der Studie ergaben ein signifikant geringeres Spitzendrehmoment von Invertoren und Evertoren bei konzentrischen Bewegungen bei Leistungssportlern mit einer Distorsion des Sprunggelenks in der Anamnese. Gleichzeitig wurde kein signifikanter Unterschied im Verhältnis von Evertoren/Invertoren-Spitzendrehmoment und Propriozeption der Gelenkposition zwischen den beiden Gruppen festgestellt.



Publication History

Received: 02 July 2020

Accepted: 20 November 2020

Article published online:
22 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nakasa T, Fukuhara K, Adachi N. et al. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error. Archives of Orthopaedic and Trauma Surgery 2008; 128: 445-449
  • 2 Nuhmani S, Khan MH. Lateral ankle sprain: A review. Saudi Journal of Sports Medicine 2014; 14: 14
  • 3 Ziai P, Benca E, Skrbensky GV. et al. The role of the medial ligaments in lateral stabilization of the ankle joint: an in vitro study. Knee Surgery, Sports Traumatology, Arthroscopy 2015; 23: 1900-1906
  • 4 Raina S, Nuhmani S. Factors Leading to Lateral Ankle Sprain: A Review of the Literature. Journal of Musculoskeletal Research 2014; 17: 1430001
  • 5 Pourkazemi F, Hiller CE, Raymond J. et al. Predictors of recurrent sprains after an index lateral ankle sprain: a longitudinal study. Physiotherapy 2018; 104: 430-437
  • 6 Ersoz M, Atalay NS, Kumbara F. et al. Investigation of effect of age, gender and limb dominance on ankle evertor/invertor peak torque ratios of healthy volunteers. Journal of Physical Therapy Science 2009; 21: 263-267
  • 7 Kiers H, Brumagne S, van Dieen J. et al. Ankle proprioception is not targeted by exercises on an unstable surface. Eur J Appl Physiol 2012; 112: 1577-1585
  • 8 Lentell GL, Katzman LL, Walters MR. The relationship between muscle function and ankle stability. Journal of Orthopaedic & Sports Physical Therapy 1990; 11: 605-611
  • 9 de Noronha M, Refshauge KM, Herbert RD. et al. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain?. British journal of sports medicine 2006; 40: 824-828
  • 10 Hertel J. Functional instability following lateral ankle sprain. Sports medicine (Auckland, NZ) 2000; 29: 361-371
  • 11 Han J, Anson J, Waddington G. et al. The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury. BioMed research international 2015; 2015: 842804
  • 12 Ross SE, Guskiewicz KM, Gross MT. et al. Assessment tools for identifying functional limitations associated with functional ankle instability. Journal of athletic training 2008; 43: 44-50
  • 13 Willems T, Witvrouw E, Verstuyft J. et al. Proprioception and Muscle Strength in Subjects With a History of Ankle Sprains and Chronic Instability. J Athl Train 2002; 37: 487-493
  • 14 St Pierre RK, Andrews L, Allman F. et al. The Cybex II evaluation of lateral ankle ligamentous reconstructions. Am J Sports Med 1984; 12: 52-56
  • 15 David P, Halimi M, Mora I. et al. Isokinetic testing of evertor and invertor muscles in patients with chronic ankle instability. Journal of applied biomechanics 2013; 29: 696-704
  • 16 Hartsell HD, Spaulding SJ. Eccentric/concentric ratios at selected velocities for the invertor and evertor muscles of the chronically unstable ankle. British journal of sports medicine 1999; 33: 255-258
  • 17 Wilkerson GB, Pinerola JJ, Caturano RW. Invertor vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. The Journal of orthopaedic and sports physical therapy 1997; 26: 78-86
  • 18 Edouard P, Chatard J-C, Fourchet F. et al. Invertor and evertor strength in track and field athletes with functional ankle instability. Isokinetics and Exercise Science 2011; 19: 91-96
  • 19 Munn J, Beard DJ, Refshauge KM. et al. Eccentric muscle strength in functional ankle instability. Med Sci Sports Exerc 2003; 35: 245-250
  • 20 Ryan L. Mechanical stability, muscle strength and proprioception in the functionally unstable ankle. The Australian journal of physiotherapy 1994; 40: 41-47
  • 21 McVey ED, Palmieri RM, Docherty CL. et al. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. Foot & ankle international 2005; 26: 1055-1061
  • 22 Milanezi FC, Marques NR, Cardozo AC. et al. Comparação dos parâmetros de força e propriocepção entre indivíduos com e sem instabilidade funcional de tornozelo. Fisioterapia e Pesquisa 2015; 22: 23-28
  • 23 Cn B, Ross S, Mynark R. et al. Assessing Functional Ankle Instability with Joint Position Sense, Time to Stabilization, and Electromyography. Journal of Sport Rehabilitation 2004; 13: 122-134
  • 24 Konradsen L. Factors Contributing to Chronic Ankle Instability: Kinesthesia and Joint Position Sense. J Athl Train 2002; 37: 381-385
  • 25 Liu YW, Jeng SC, Lee A. The influence of ankle sprains on proprioception. Journal of Exercise Science & Fitness 2005; 3: 33-38