Klin Padiatr 2021; 233(03): 127-134
DOI: 10.1055/a-1335-4844
Original Article

Benefit of Static FET PET in Pretreated Pediatric Brain Tumor Patients with Equivocal Conventional MRI Results

Nutzen der statischen FET-PET bei multimodal behandelten pädiatrischen Hirntumorpatienten mit uneindeutigen MRT Befunden
Frederik Grosse
1   Department of Pediatric Oncology and Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
2   Department of Gastroenterology and Diabetology, Städtisches Klinikum Brandenburg GmbH, Brandenburg an der Havel, Germany
,
Florian Wedel
3   Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
,
Ulrich-Wilhelm Thomale
4   Department of Neurosurgery, Section of pediatric Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
,
Ingo Steffen
5   Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
,
Arend Koch
6   Institute of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
,
Winfried Brenner
3   Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
,
Michail Plotkin
7   Institut für Nuklearmedizin, Vivantes-Netzwerk fur Gesundheit GmbH, Berlin, Germany
,
Pablo Hernáiz Driever
1   Department of Pediatric Oncology and Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
› Author Affiliations

Abstract

Background MRI has shortcomings in differentiation between tumor tissue and post-therapeutic changes in pretreated brain tumor patients.

Patients We assessed 22 static FET-PET/CT-scans of 17 pediatric patients (median age 12 years, range 2–16 years, ependymoma n=4, medulloblastoma n=4, low-grade glioma n=6, high-grade glioma n=3, germ cell tumor n=1, choroid plexus tumor n=1, median follow-up: 112 months) with multimodal treatment.

Method FET-PET/CT-scans were analyzed visually by 3 independent nuclear medicine physicians. Additionally quantitative FET-Uptake for each lesion was determined by calculating standardized uptake values (SUVmaxT/SUVmeanB, SUVmeanT/SUVmeanB). Histology or clinical follow-up served as reference.

Results Static FET-PET/CT reliably distinguished between tumor tissue and post-therapeutic changes in 16 out of 17 patients. It identified correctly vital tumor tissue in 13 patients and post-therapeutic changes in 3 patients. SUV-based analyses were less sensitive than visual analyses. Except from a choroid plexus carcinoma, all tumor entities showed increased FET-uptake.

Discussion Our study comprises a limited number of patients but results corroborate the ability of FET to detect different brain tumor entities in pediatric patients and discriminate between residual/recurrent tumor and post-therapeutic changes.

Conclusions We observed a clear benefit from additional static FET-PET/CT-scans when conventional MRI identified equivocal lesions in pretreated pediatric brain tumor patients. These results warrant prospective studies that should include dynamic scans.

Zusammenfassung

Hintergrund Die MRT ist in der Differenzierung zwischen Tumorgewebe und therapieassoziierten Veränderungen bei vorbehandelten Hirntumorpatienten limitiert.

Patienten Wir untersuchten retrospektiv 22 FET-PET/CT Untersuchungen von 17 multimodal behandelten pädiatrischen Patienten (medianes Alter 12 Jahre, Spannbreite 2–16 Jahre, Ependymom n=4, Medulloblastom n=4, niedriggradiges Gliom n=6, hochgradiges Gliom n=3, Keimzelltumor n=1, Choroid-Plexus Tumor n=1, mediane Beobachtungszeit: 112 Monate).

Methode 22 FET-PET/CT Scans/Läsionen wurden unabhängig visuell von 3 Nuklearmedizinern bewertet. Zusätzlich wurde für jede Läsion die quantitative FET-Aufnahme durch Berechnung von standardisierten Aufnahmewerten (SUV) bestimmt (SUVmaxT/SUVmeanB, SUVmeanT/SUVmeanB). Als Referenz dienten die Histologie oder die klinische Verlaufsbeurteilung.

Ergebnisse Die statische FET-PET/CT unterschied bei 16 von 17 Patienten zuverlässig zwischen Tumorgewebe und therapieassoziierten Veränderungen: 13 Patienten mit vitalem Tumorgewebe sowie 3 Patienten mit posttherapeutischen Veränderungen. Die SUV-basierte Analyse war weniger sensitiv als die visuelle Analyse. Alle untersuchten Tumorentitäten außer einem Choroid-Plexus Karzinom zeigten eine gesteigerte FET-Aufnahme.

Diskussion Die Ergebnisse unterstreichen die Möglichkeit der Erkennung unterchiedlicher Tumorentitäten bei Kindern. Hierbei erscheint eine Diskriminierung zwischen Residual-/Rezidivtumor und therapieassoziierten Veränderungen möglich.

Schlussfolgerung Das klinische Vorgehen wurde durch den Einsatz der statischen FET-PET/CT Untersuchungen bei uneindeutigen MRT-Untersuchungen vorbehandelter pädiatrischer Hirntumorpatienten vereinfacht. Dieser Nutzen sollte in prospektiven Studien durch Einsatz von dynamischen FET-PET/CT Untersuchungen gesichert werden.



Publication History

Article published online:
17 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Buhl JL, Selt F, Hielscher T. et al. The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clin Cancer Res 2018; DOI: 10.1158/1078-0432.Ccr-18-1965.
  • 2 Chawla S, Korones DN, Milano MT. et al. Spurious progression in pediatric brain tumors. J Neurooncol 2012; 107: 651-657
  • 3 Dunkel IJ, Gardner SL, Garvin JH. et al. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro Oncol 2010; 12: 297-303
  • 4 Dunkl V, Cleff C, Stoffels G. et al. The usefulness of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine-PET in the clinical evaluation of brain tumors in children and adolescents. Journal of nuclear medicine: official publication. Society of Nuclear Medicine 2014; DOI: 10.2967/jnumed.114.148734.
  • 5 Floeth FW, Pauleit D, Sabel M. et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2007; 48: 519-527
  • 6 Floeth FW, Pauleit D, Wittsack HJ. et al. Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 2005; 102: 318-327
  • 7 Floeth FW, Sabel M, Stoffels G. et al. Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2008; 49: 730-737
  • 8 Gnekow AK, Falkenstein F, von Hornstein S. et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol 2012; 14: 1265-1284
  • 9 Grosu AL, Astner ST, Riedel E. et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 2011; 81: 1049-1058
  • 10 Kaatsch P, Rickert CH, Kuhl J. et al. Population-based epidemiologic data on brain tumors in German children. Cancer 2001; 92: 3155-3164
  • 11 Kasper BS, Struffert T, Kasper EM. et al. 18Fluoroethyl-L-tyrosine-PET in long-term epilepsy associated glioneuronal tumors. Epilepsia 2011; 52: 35-44
  • 12 Kumar AJ, Leeds NE, Fuller GN. et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217: 377-384
  • 13 Lohmann P, Lerche C, Bauer EK. et al. Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 2018; 8: 13328
  • 14 Lohmann P, Werner JM, Shah NJ. et al. Combined Amino Acid Positron Emission Tomography and Advanced Magnetic Resonance Imaging in Glioma Patients. Cancers (Basel) 2019; 11
  • 15 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 803-820
  • 16 Macdonald DR, Cascino TL, Schold SC. et al. Response criteria for phase II studies of supratentorial malignant glioma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 1990; 8: 1277-1280
  • 17 Marner L, Nysom K, Sehested A. et al. Early Postoperative 18-F FET-PET/MRI for pediatric brain and spinal cord tumors. J Nucl Med 2019; DOI: 10.2967/jnumed.118.220293.
  • 18 Mehrkens JH, Popperl G, Rachinger W. et al. The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 2008; 88: 27-35
  • 19 Messing-Junger AM, Floeth FW, Pauleit D. et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Child’s nervous system: ChNS: official journal of the International Society for Pediatric Neurosurgery 2002; 18: 445-449
  • 20 Misch M, Guggemos A, Driever PH. et al. (18)F-FET-PET guided surgical biopsy and resection in children and adolescence with brain tumors. Childs Nerv Syst 2015; 31: 261-267
  • 21 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 22 Pauleit D, Stoffels G, Bachofner A. et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 2009; 36: 779-787
  • 23 Popperl G, Gotz C, Rachinger W. et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
  • 24 Rachinger W, Goetz C, Popperl G. et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine vs. magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511
  • 25 Salber D, Stoffels G, Pauleit D. et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2007; 48: 2056-2062
  • 26 Song S, Cheng Y, Ma J. et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging 2020; 47: 1458-1467
  • 27 Stockhammer F, Plotkin M, Amthauer H. et al. Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neurooncol 2008; 88: 205-210
  • 28 Suchorska B, Giese A, Biczok A. et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol 2018; 20: 279-288
  • 29 Utriainen M, Metsahonkala L, Salmi TT. et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 2002; 95: 1376-1386
  • 30 Vander Borght T, Asenbaum S, Bartenstein P. et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 2006; 33: 1374-1380
  • 31 Vezina LG. Imaging of central nervous system tumors in children: advances and limitations. J Child Neurol 2008; 23: 1128-1135
  • 32 Vinchon M, Leblond P, Noudel R. et al. Intracranial ependymomas in childhood: recurrence, reoperation, and outcome. Childs Nerv Syst 2005; 21: 221-226
  • 33 Weckesser M, Langen KJ, Rickert CH. et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
  • 34 Werner JM, Stoffels G, Lichtenstein T. et al. Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. Eur J Nucl Med Mol Imaging 2019; 46: 1889-1901
  • 35 Wester HJ, Herz M, Weber W. et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1999; 40: 205-212