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Physiological Polyanions

Biological polyanions are highly abundant, negatively charged
molecules that exist ubiquitously invarious forms innature. For
decades it has been established that polyanions participate in
blood coagulation and exert either procoagulant or anticoagu-
lant activities that contribute to normal hemostasis or patho-
logical thrombosis, respectively. Polyanionic carbohydrates,
glycosaminoglycans (GAGs) provide anticoagulant activities
on the cell surface of most eukaryotic cells. Heparan-, chon-
droitin-, and dermatan-sulfate-type GAGs interfere with clot
formation at the interface of blood and vascular cells by
amplifying antithrombin and heparin cofactor II activities.1

Mast cell-derived heparin shares structural similarity with
heparan sulfate. Unfractionated heparin, low-molecular weight
heparin, and heparin-derived agents are commonly used ther-

apeutically as injectable anticoagulants.2 In contrast to nega-
tively charged polysaccharides, DNA, a key component of
neutrophil extracellular traps (NETs), and polyphosphate (pol-
yP) have procoagulant activities and promote blood clotting
with implications for thrombosis (►Fig. 1).

Extracellular DNA

Circulating extracellular DNA in human plasmawas described
as early as 1948.3 In response to stimulation, an array of cells,
including leukocytes, mast cells, senescent cells, and tumor
cells, release their DNA into the extracellular space either as
chromatin (histones complexed with DNA), naked double-
stranded DNA (dsDNA), or mitochondrial DNA.4 In addition
to actively released nucleic acids, DNA from disintegrating
bacteria and viruses is also detectable in circulation.5 Small
amountsofextracellularDNAarepresent inplasmaandserum
of healthy individuals; however, levels are largely elevated in
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Abstract Neutrophil extracellular traps (NETs) and polyphosphates (polyP) have been recognized
as procoagulant polyanions. This review summarizes the activities and regulation of the
two procoagulant mediators and compares their functions. NETs are composed of DNA
which like polyP is built of phosphate units linked by high-energy phosphoanhydride
bonds. Both NETs and polyP form insoluble particulate surfaces composed of a
DNA/histone meshwork or Ca2þ-rich nanoparticles, respectively. These polyanionic
molecules modulate coagulation involving an array of mechanisms and trigger
thrombosis via activation of the factor XII-driven procoagulant and proinflammatory
contact pathway. Here, we outline the current knowledge on NETs and polyP with
respect to their procoagulant and prothrombotic nature, strategies for interference of
their activities in circulation, as well as the crosstalk between these two molecules. A
better understanding of the underlying, cellular mechanisms will shed light on the
therapeutic potential of targeting NETs and polyP in coagulation and thrombosis.
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pathological conditions, suggesting the use of extracellular
DNA as a prognostic biomarker.6–10

Neutrophils are the predominant leukocyte in human blood
and present themajor source of extracellular DNA. In response
to various inflammatory stimuli, activated neutrophils cast out
their DNA, forming NETs. NETs were originally described as
components of the innate immune response to microbial
infections that trap invading microorganisms, thus interfering
with pathogen dissemination. Furthermore, it has been shown
that inducers of phagocytosis trigger NET formation suggesting
a cooperative effect of NETosis and phagocytosis in host de-
fense.11NETs are composedof longDNA strands that arebound
to histones and neutrophil granular-derived proteins.12 DNA-
intercalating dyes stain NETs; however, the signal is lost upon
efficient digestion by deoxyribonuclease-1 (DNase1) indicating
that polyanionic dsDNA is the major component of NETs.13

Since their discovery, NETs have been implicated in a plethora
of pathophysiologic conditions offering a novel link between
inflammation and thrombosis in an emerging field in
biomedicine.14–16

NET formation is a multistep process (►Table 1). Upon
neutrophil activation, nuclear chromatin starts to decondense,
leading to a loss of the typical lobulated morphology of the
neutrophils’ nucleus. During classical NET formation, the
multimericNADPH-oxidase assembles on cellularmembranes
and produces reactive oxygen species, which in turn activate
the enzyme peptidyl-arginine deiminase 4 (PAD4).17,18 PAD4
citrullinates histones, neutralizing their net positive charge
and thus reducing their affinity for binding to the negatively
chargedDNApolyanion, thereby facilitating chromatin decon-
densation.18 Additionally, neutrophil elastase (NE) and mye-
loperoxidase (MPO) are released fromneutrophil granules and

translocate to the nucleus, where they degrade histones and
promote further unfolding of chromatin.19 Consequently, the
nuclear membrane breaks up, and chromatin is released into
the cytosol, where it binds to granular and cytosolic proteins.
The mechanism by which the plasma membrane ruptures to
release NETs is not completely understood; however, recent
studies indicate that the pore-forming protein gasdermin D
might play a role.20

The extracellular DNA forms supramolecular web-like
structures both in the vasculature and surrounding tissues.17

High-resolution scanning electron microscopy (SEM)
revealed that NETs are made of fine thread-like structures,
composed of long and sticky DNA strands.13

Polyphosphate

In contrast to NETs, polyP is a purely inorganic polymer
composed of linear chains of orthophosphates that are
connected by energy-rich phosphoanhydride bonds
(►Table 1). PolyP is abundant in the environment, synthetic
polyP is used in multiple technical processes (e.g., as water
softener, food ingredient, or fire extinguisher), and physio-
logical polyP is found in every cell in nature. The polymer is
evolutionarily conserved among bacterial, fungal, plant, and
animal cells.21 The high-energy phosphoanhydride bonds in
the polyP chain are equivalent to those in ATP and bacteria
and yeast use the polymer as a chemical energy storage pool
during starvation and environmental stress.22

Prokaryotic and lower eukaryotic microorganisms have
intracellular polyP molecules ranging in chain length from a
fewhundreds to thousands of phosphate units. The polymer is
stored in subcellular organelles called acidocalcisomes, along

Fig. 1 Common mechanistic and structural features of NETs and platelet polyP. The lower part of the left image shows a neutrophil that is
releasing NETs (depicted by long, dark blue DNA strands entangled with histones and other granular proteins) and the right-hand side shows a
platelet decorated with polyP on its surface. PolyP can be composed of a few hundreds to thousands of phosphate units, which also make up the
phosphate backbone of DNA. The phosphate backbone serves as a structural support and energy source for both of these molecules. NETs and
polyP are polyanionic, immunomodulatory structures that can activate platelets, FXII, and other factors of the contact pathway, which will lead
to further downstream events of the coagulation cascade. Eventually, NETs and polyP can interact with fibrin and fibrinogen, reinforcing the
fibrin meshwork. C3/C5, complement components; FXII, factor XII; FXIIa, activated FXII; Mac-1: macrophage-1 antigen/CD11b/CD18; NET;
neutrophil extracellular trap; polyP, polyphosphate; PSGL-1: P-selectin glycoprotein ligand-1; TF: tissue factor; TFPI: tissue factor pathway
inhibitor; TLR: toll-like receptor; vWF, von Willebrand factor.

Thrombosis and Haemostasis Vol. 121 No. 8/2021 © 2020. Thieme. All rights reserved.

Polyanions in Coagulation and Thrombosis Rangaswamy et al.1022

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



withhighconcentrations (in themolar range)ofdivalentmetal
cations,mostly Ca2þ but alsoMg2þ and Zn2þ.21 Ca2þ-ions bind
to the phosphate units in the polyP backbone with high
affinity. In vivo, physiological polyP is complexed with metal
ions. Ion-boundpolyPhasadifferent structure andbiophysical

properties. Ca2þ-polyP has little if any solubility in plasma,
challenging the predictive value of coagulation studies based
on soluble synthetic polyP. Despite detailed information on
polyP metabolism in yeast, not much is known about polyP
regulation in mammals. The polymer is enriched in various

Table 1 Formation, binding partners, cellular origin, detection, and degradation of neutrophil extracellular traps and
polyphosphate

Neutrophil extracellular traps Polyphosphate

Formation • Microbial/inflammatory stimuli such as LPS, TLRs,
cytokine, Fc, or complement receptors13,112–114

• Synthetic compounds like phorbol myristate ace-
tate (PMA), A23187, or ionomycin114,115

• Platelet neutrophil interaction113

• Polyphosphate kinase 1 and 2 (PPK1, PPK2) and
homologs, e.g., DdPPK71,116

• Vacuolar transporter chaperone cleaves
ATP γ-phosphate residues117

• Formation and secretion are induced by agonists
such as thrombin, thrombin receptor-activating
peptide 6 (Trap6), collagen, and ADP31

Binding
partners

• Binds platelets via glycoprotein Ibα, P-selectin, and
high-mobility group box 1 (HMGB1)62,118,119

• Extracellular histones, predominantly H3 and H4,
cause platelet aggregation120 and induce platelets
to secrete short-chain polyP from α-granules65,94

• DNA and histones individually promote thrombin
generation; histones have shown to do so in a
polyP-dependent manner49,65,94

• NETs can bind and activate FXII, which then induces
the activation of the kallikrein–kinin system61

• Neutrophil elastase (NE) cleaves prothrombin, re-
leasing small peptides that exert antibacterial and
immunomodulatory effects121

• TFPI and thrombomodulin can be inactivated by
myeloperoxidase (MPO) and serine proteases122

• NE and cathepsin G contribute to fibrin formation
on NETs, also by degradation of TFPI95

• Intertwined fibrin–NET fibrils may reinforce NETs to
prevent pathogen spread123

• NETs can amplify tissue factor124,125

• vWF binds to isolated DNA in vitro, potentially
acting as a linker for leukocyte adhesion to endo-
thelial cells126

• Accelerates the generation of FXIa and thrombin127

• Amplifies thrombin-mediated activation of FXI128

• Accelerates FV activation by FXa and thrombin128

• Enhances the binding of platelets to von Willebrand
factor129

• Activates FXII127 thereby also triggering
inflammation via FXIIa-mediated activation of the
kallikrein–kinin system52

• Inactivates TFPI, abrogating its anticoagulant func-
tion130

• Integrates into the fibrin clot, making it more
resistant to fibrinolysis131

• Binds extracellular histones and activates
platelets132

Cellular
origin

• Leukocytes13,133

• Mast cells134

• Tumor cells4

• Ubiquitously found in various species including
bacterial, plant, and mammalian cells21

• Platelet dense granules29

• Mast cells34

• Astrocytes135

• Tumor cells27

Detection • Microscopy13

• Flow cytometry81

• Flow chamber113

• ELISA82

• Western blotting19

• Sytox Green/PicoGreen staining12

• DAPI, Hoechst 33342, toluidine blue O,
methylene blue, tetracycline, neutral red,
malachite green85–87

• Flow cytometry79,87

• Urea-polyacrylamide gel electrophoresis84

• Chromatography84

• 32P-NMR84

• Fourier transform-infrared (FT-IR)84

• Mass spectrometry84

• Microscopy84

Degradation • Endonucleases DNase1 and DNase1 like-359

• Human monocyte-derived macrophages and den-
dritic cells69,70

• Opsonization by complement factors70

• Endopolyphosphatases, e.g., Ppn1, Ppn2,
Ddp174,75,136

• Exopolyphosphatases, e.g., Ppx172,73

• Diphosphoinositol polyP phosphohydrolases
(DIPPs) may degrade polyP in mammals76

Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; ELISA, enzyme-linked immunosorbent assay; LPS; lipopolysaccharides; NET; neutrophil
extracellular trap; 32P-NMR, phosphorus-31 nuclear magnetic resonance; polyP, polyphosphate; TFPI, tissue factor pathway inhibitor; TLR: toll-like
receptor; vWF, von Willebrand factor.
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subcellular compartments including lysosomes,mitochondria,
and nuclei; however, it is also found in association with the
cytoskeleton and in the cytoplasm. Some cells such as astro-
cytes,mast cells, tumor cells, and platelets have the capacity to
actively release polyP from secretory vesicles.23–28 Platelet
dense granules are specialized secretory organelles similar to
acidocalcisomes found in microorganisms. Dense granules
appear as dark vesicles in electronmicroscopy images because
of their high local concentration of polyP (�130mM) that is
complexed with Ca2þ, Mg2þ, and Zn2þ ions.29,30

PolyP in Blood Coagulation

Patients with a defect in platelet dense granules show
significantly lower polyP levels and defective factor XII
(FXII)-dependent clotting in platelet-rich plasma (PRP; Her-
mansky–Pudlak syndrome, delta storage pool diseases, Che-
diak–Higashi syndrome).24,31,32 The addition of exogenous
polyP to PRP of Hermansky–Pudlak syndrome patients
restores their clotting capacity, consistent with the notion
that platelet polyP triggers coagulation in a FXII-dependent
manner.31 Yeast cells lacking inositol hexakisphosphate ki-
nase (a key enzyme involved in polyP synthesis) are devoid of
polyP. Consistently, platelets of inositol hexakisphosphate
kinase-1-deficient (Ip6k1�/�) mice have reduced polyP lev-
els, compromised FXII-triggered coagulation, and are pro-
tected from platelet-driven lethal pulmonary embolisms.33

In addition to defective polyP levels, Ip6k1�/� mice show an
array of other severe phenotypes including infertility and
heart problems making them a challenging model to study
platelet polyP in vivo. Xenotropic and polytropic retrovirus
receptor 1 (XPR1) is a transmembrane protein that was
originally described as a cellular docking site for retroviruses
but also functions as a phosphate exporter. Recent systems
biology-based studies have identified XPR1 as the major, if
not exclusive, phosphate exporter in platelets. Pharmacolog-
ic and genetic targeting of XPR1 activity increased intracel-
lular phosphate levels and led to polyP accumulation.
Conditional ablation of the Xpr1 gene in mouse platelets
accelerated arterial thrombosis and activated platelet-driven
pulmonary embolism, but did not affect hemostasis.34 The
data identify XPR1 as the first specific regulator of polyP in
platelets and possibly other cells and indicate a fundamental
role of phosphatemetabolisms for thromboembolic diseases.

For years, it was believed that platelets secrete soluble
short-chain 50–100mer polyP upon activation. However,
this hypothesis was based on polymer purifications from the
supernatant of activated platelets using a phenol–chloroform
extraction method that selects for short-chain water soluble
molecules.31 Follow-up studies using anion-exchange isola-
tion methods from complete cell lysates confirmed the pres-
ence of small amounts of short-chain polyP in platelets.
Additionally, it was revealed that, similar to othermammalian
cells, the vast majority of platelet polyP consists of long-chain
polymers. As platelets store polyP together with high concen-
trations of Ca2þ ions in dense granules, the released polyP is
complexedwith calcium.35 Ca2þ–polyP has a very low solubil-
ity and readily precipitates into nanoparticles independent of

its chain length.36PolyPnanoparticles are stable inphysiologic
buffers for several hours.37 Real-time imaging using polyP-
specific probes showed that onlyminor portions of the soluble
polyanion fraction are released into the supernatant while the
majority remains anchored to the platelet plasma mem-
brane.38,39 Flow cytometry-based methods have been estab-
lished to quantify polyP on the surface of activated platelets
suggesting a potential use of polyP as a biomarker in throm-
botic diseases.40 Platelet-bound polyP nanoparticles drive
coagulation in a FXII-dependent manner, while soluble poly-
mers have the capacity to drive other FXII-independent coag-
ulation reactions. Consistent with the notion that polyP
operates by activating FXII, a series of classical studies has
shown the contribution of FXII in activated platelet-driven
coagulation/clot formation.41–44 Vice versa, ablation of FXII or
polyP impairs platelet-driven thrombosis in murine
models.33,45,46

NETs in Blood Coagulation

Similar topolyP,multiple invivo studieshaveshownNETs tobe
implicated in thrombotic and inflammatory reactions.47–54

Following vascular injury, neutrophils immediately migrate
to the lesion site preceding platelets.50 At the site of injury,
activatedplatelets and endothelial cells activate neutrophils to
induce NET formation (NETosis). NETs in turn stimulate plate-
let aggregationand triggerfibrin formation invitro.48NETs are
abundant in thrombi from experimental animal models and
infusion of DNase interferes with thrombus formation.48,55

NETs are also enriched in venous and arterial thrombi of
patients who suffered from a heart attack,56 stroke,57 and
peripheral vascular arterial occlusions.58 Furthermore, it has
been shown that NETs alone are sufficient for vascular occlu-
sions under septic conditions in the absence of host enzymes
DNase1 and DNase1L3.59 High levels of NET biomarkers, such
as DNA/histones complexes, MPO, and S100A8/A9, are detect-
able in plasma from patients with thrombotic microangiop-
athy, indicating that the ineffective clearance of NETs
contributes to the mechanisms of the occlusive disease.55,60

Various components of NETs have been identified as initiators
or propagators of coagulation activity, including histones and
granule proteins. Soluble DNA purified from neutrophils, as
well as NETs (induced by glucose oxide or interleukin-8 [IL-8]
stimulation), can assemble and activate FXII in vitro.61 SEM of
NETs induced by platelet-activated neutrophils showed that
the DNA backbone of NETs binds FXII and its substrate of the
intrinsic coagulation pathway, factor XI (FXI).62 However,
whetherNETs directly trigger FXII contact activationormerely
act as a scaffold for the assembly of FXII activators and
coagulation factors is still unclear.63 Thrombin generation
triggered by the addition of NETs is reduced in FXII- and
FXI-deficient plasma, indicating that the procoagulant activity
of NETs is mediated by the FXII–FXI axis at least in vitro.49

Besides contact-activating FXII, DNA acts as a surface in
thrombin-dependent FXI activation.64

Many of the studies on the procoagulant nature of NETs
examined purified NET DNA and the various components of
NETs individually, and thus the overall procoagulant activity
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of NETs was largely omitted. Recently it was shown that
human neutrophil-purified DNA and recombinant histones
H3 and H4 triggered coagulation in plasma individually,
whereas intact NETs did not. Histone–histone and histone–
DNA interactions within the nucleosome unit and super-
coiled chromatin in NETs neutralize the negative charges of
the polyanion and thereby dampen the procoagulant activity
of NET–DNA.65 The precisemechanisms of NETs in thrombus
formation are the subject of ongoing studies; however, NETs
appear to stimulate both platelets and the coagulation
system.49

Degradation of NETs and polyP

Despite their functional and structural similarities, the deg-
radation pathways of NETs and polyP seem to be quite
different. Defective NET clearance triggers proinflammatory
and autoimmune conditions; however, the underlying
mechanisms are still under investigation. Degradation of
NETs is an intricate process involving the activity of various
enzymes. While endonucleases efficiently degrade extracel-
lular DNA, other NET components such as histones and NE
remain intact in a murine model of bacterial infection.66

Although coagulation inhibitor activated protein C (APC)
cleaves histones and interferes with their cytotoxic activity
in a purified system, it has no effect on NET-induced cyto-
toxicity suggesting that histone-dependent cytotoxicity is
protected from APC degradation.67,68

Complete degradation of NETs in vivo requires the con-
certed activity of two secreted host endonucleases, DNase1
and DNase1-like 3.59 The reconstitution of either DNase1 or
DNase1-like 3 was sufficient to rescue the lethal phenotype
of a chronic inflammation model in Dnase1�/�/Dnase1-
like3�/� mice. In addition to extracellular DNases, the cyto-
solic exonuclease TREX1 (DNase III) has the capacity of
clearing NETs in vitro.69 Furthermore, NETs can be engulfed
by monocyte-derived macrophages and dendritic cells in a
cytochalasin D-dependent manner, implying a role of active
endocytosis in NET clearance.69,70 Following internalization
by macrophages, NETs are degraded in lysosomal compart-
ments in an immunologically silent manner. Hence, NET
clearance does not evoke the release of proinflammatory
cytokines, maintaining homeostasis in tissues.70

In contrast to NETs, not much is known about polyP
metabolism in mammalian systems. In prokaryotes polyP
is synthesized by polyP kinase (PPK), which reversibly trans-
fers γ-phosphate units from ATP and guanosine diphosphate
onto the polymer chain.22,71 Depolymerization of polyP into
free Pi residues is catalyzed by exopolyphosphatase (Ppx).72

Three distinct polyP phosphatases have been described in
Saccharomyces cerevisiae: exopolyphosphatase [Ppx1],
endopolyphosphatases [Ppn1], and diadenosine and diphos-
phoinositol phosphohydrolase [Ddp1].73–75 Mammalian
homologs for these polyP phosphatases have not yet been
identified; however, diphosphoinositol polyP phosphohy-
drolases seem to participate in polyP degradation under
alkaline conditions.75 Mammalian alkaline phosphatase
(AP) from calf intestine is a potent exopolyphosphatase

and cleaves polyP.76 Ca2þ–polyP has a half-life in plasma of
approximately 90minutes, before it gets degraded by poly-
phosphatases, such as AP. Exopolyphosphatase (Ppx1)-me-
diated degradation of polyP improved cardiomyocyte
function in cell culture77 and alleviated Ca2þ accumulation
in mitochondria and Ca2þ-induced cell death processes
related to myocardial infarction and ischemia-reperfusion
injury.

Extracellular RNA is considered to promote blood coagu-
lation based on the fact that infusion of RNase interfereswith
arterial thrombosis in a murine FeCl3-driven vascular injury
model.78 RNase readily hydrolyzes polyP, offering an alter-
native explanation for the thromboprotective effects con-
ferred by the enzyme.79

Detection of polyP and NETs

NETs and polyP are detected by similar dyes and techniques.
Imaging of NETs in vitro is mainly based on immunofluores-
cence microscopy, transmission electron microscopy, and
SEM. The DNA-intercalating dyes SYTOX Green/PicoGreen
and 4′,6-diamidino-2-phenylindole (DAPI), as well as anti-
bodies against NET-specific structures such as citrullinated
histones (H3cit) and histone–MPO complexes are typically
used for microscopy.13 In recent years, the occasional bias in
microscopic imaging of NETs has been criticized, hencemore
automated software tools for image-based NET quantifica-
tion are currently being developed.80 Granular proteins and
other NET components can also be targeted with flow
cytometry, Western blotting, and enzyme-linked immuno-
sorbent assays.19,81,82 To further standardize quantification
of NETs, especially in clinical settings, the ISTH (International
Society on Thrombosis and Haemostasis) Vascular Biology
Subcommittee has recently started a collaborative effort to
investigate and harmonize NET quantification techniques.
Despite successful imaging of NETs in vitro, visualization of
the polyanion in vivo still poses significant hurdles. However,
during the last few years, imaging by intravital microscopy
has strongly facilitated the in vivo evaluation of NET forma-
tion and degradation.64,83

PolyP can be stained with dyes such as toluidine blue O or
methylene blue to be visualized by phase-contrast, bright-
field, and electron microscopy.79 Because polyP is mainly
stored in membrane-enclosed compartments in eukaryotes,
the dyes neutral red and tetracycline can detect polyP with
nondestructive methods, such as light microscopy and flow
cytometry.84 Similarly to NETs, DNA-intercalating dyes such
as DAPI85 and Hoechst 3334286 stain polyP. However, DAPI
bound to polyP emits a bright yellow-green fluorescence,
distinct from the blue fluorescence emitted by DNA.87 Tolui-
dine blue O and DAPI only detect polyP with a chain length
longer than 15-mers.88,89 Sophisticated flow cytometry
analyses using DAPI or tetracycline staining87 or recombi-
nant polyP-specific probes based on the polyP-binding do-
main of Escherichia coli exopolyphosphatase40 are also being
employed.

Malachite green dye binds free orthophosphates and can
be used to quantify phosphate monomers in solution.79
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Degradation of polyP with Ppx, allows for quantifying polyP
concentration. The malachite green assay fails to detect the
chain length of the polyanion; however, it has a high sensi-
tivity and measures polyP up to the picomolar range. As Ppx
only digests polyP with a chain length of greater than 38
phosphate subunits, the malachite green assay is insensitive
for short-chain polyP. PolyP can furthermore be visualized by
microscopy,79 electrophoresis, chromatography, 32P-NMR,
Fourier transform-infrared, and mass spectrometry.84

Crosstalk of NETs and polyP

Inflammation and thrombosis are mediated by a complex
interplay involving neutrophils and platelets. During coagu-
lation, FXII is activated by a unique mechanism triggered by
binding (“contact”) to negatively charged polyanionic surfa-
ces (“contact activation”). Activated FXII initiates the intrin-
sic pathway of coagulation and the bradykinin-producing
kallikrein–kinin system, leading to coagulation and inflam-
mation.90–92 Extracellular DNA and polyP activate FXII and
promote thrombosis by the intrinsic pathway of coagulation
in vivo.87,93,94

While polyP initiates coagulation via FXII, NETs also con-
tribute to the activity of the tissue factor (TF)-driven extrinsic
coagulationpathway.NET-associatedTFandgranular protease
NEandcathepsinG inhibit theTFpathway inhibitor (TFPI).95,96

Activation of neutrophils with cytokines upregulates their TF
mRNA expression and TF deposition on NETs.97 Furthermore,
NETs contribute to mechanical clot stability by slowing down
plasminogen–plasmin conversion by tissue plasminogen acti-
vator (t-PA) on clot surfaces. They also bind fibrin degradation
peptides and delay their release from fibrin clots, as well as
intercalate into fibrin fibers and delay plasmin-mediated lysis
of plasma clots.98,99

Neutrophils and platelets interact with each other via
platelet glycoprotein Ibα binding to neutrophil MAC-1 and
platelet P-selectin binding to neutrophil P-selectin glycopro-
tein ligand-1 (PSGL-1).100–103 NETs promote coagulation in a
platelet-dependent manner. High-resolution confocal intra-
vitalmicroscopy revealed that NET-triggered coagulation is a
result of collaborative interaction between multiple compo-
nents of NETs including DNA, histones and proteases with
platelets, and platelet polyPs. Histone H4 on NETs perforates
platelets causing the release of procoagulant polyP.94 Neu-
tralization of polyP with monoclonal blocking antibody
(PP2055) significantly reduced NET-initiated thrombin for-
mation in an experimental sepsis model.64 Furthermore, the
procoagulant effect of NETs in PRP was attenuated by addi-
tion of bovine AP, providing additional evidence that polyP
plays a role in the procoagulant activity of NETs.49 In an acute
ST-segment elevation myocardial infarction model, platelet
polyP led to NET formation by mTOR inhibition and autoph-
agy induction. Treatment with IL-29 counteracted the effect
of polyP on NET formation.104 Together, these studies indi-
cate that polyP interacts with NETs and that the polyP–NETs
crosstalk is important in coagulation.

Purified platelet and bacterial polyP exert high procoagu-
lant activity even in the presence of inhibitors of the TF-

driven extrinsic pathway. However, in the absence of FXII,
polyP fails to trigger procoagulant activities.31 Consistent
with polyP activities in human plasma, infusion of the
polyanion into wild-type mice led to lethal pulmonary
embolism, whereas FXII-deficient mice or mice treated
with a FXII inhibitor were protected from polyP-triggered
thrombosis. FXII, FXI, and FXII/FXI-double-deficient mice
were similarly protected upon polyP-triggered thrombosis,
indicating that polyP operates via the classical intrinsic
coagulation pathway in vivo.31

Therapeutic Targeting of NETs and polyP in
Thrombosis

NETs play a role in both arterial and venous thrombosis,making
them an interesting target to reduce thrombosis or stimulate
thrombolysis. There is a multitude of NET components (e.g.,
DNA, PAD4), cellular interactions (e.g., leukocyte–platelet/leu-
kocyte–endothelium), and signaling pathways (e.g., leukocyte
recruitment, NET formation/degradation), that are currently
being investigated and that can be targeted pharmaceutically.53

For instance, blocking platelet α-granules or Weibel–Palade
body release would hamper tethering of platelets and neutro-
phils to the vessel wall and also reduce leukocyte and platelet
recruitment upon activation.105 Treating NET-containing
thrombi fromischemicstrokepatientsexvivowith t-PAresulted
in partial thrombus dissolution, which was significantly accel-
erated upon the addition of DNase1.105 A similar study showed
that treating stroke thrombi with DNase1 alone does not
efficiently resolve the thrombi.106 Thus, a combination treat-
ment with a fibrinolytic agent, e.g., t-PA and/or ADAMTS13
(the protease specifically cleaving vWF), and a nuclease is
recommended to obtain a sufficient degree of thrombolysis.
Besides the recombinant human DNase1 (Dornase α, Pulmo-
zyme, Roche), which is approved for the treatment of cystic
fibrosis, there are ongoing endeavors to develop improvedNET-
degradingnucleases.59Furthermore, ongoingpreclinical studies
investigate PAD4 inhibitors as potential treatment options for
multiple myeloma (BMS-P5, Bristol Myers Squibb107), rheuma-
toid arthritis, lung fibrosis, and thrombosis (preclinical PAD4
inhibitors program, Jubilant Therapeutics).

Based on the structural homology of DNA and polyP,
nucleic acid-binding polymers were analyzed for interfer-
ence with polyP-mediated coagulation.108 Polyamidoamine
dendrimer, 1,4-diaminobutane core, generation 3 (PAMAM
G-3) was shown to be the most effective polyP-binding
molecule and reduced thrombus formation without increas-
ing the risk of bleeding in both the FeCl3-induced carotid
artery injury and collagen/epinephrine-induced pulmonary
thromboembolism models. The notion that targeting polyP
interferes with thrombosis while sparing hemostasis con-
firms that polyP exerts its procoagulant activity via FXII. FXII
is the only coagulation factor that critically contributes to
thrombosis but has no role in hemostatic mechanisms
(reviewed in Renné and Stavrou109). Due to concerns re-
garding the significant toxicities of anti-polyP agents includ-
ing dendrimers and other cationic small molecules,110,111

a new nontoxic, thromboprotective dendrimer-like cationic
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polyP-blocking compound class was introduced in 2016.
Two of these novel universal heparin reversal agents
(UHRAs), UHRA-9 and -10, significantly reduced arterial
thrombosis in vivo and did not indicate any signs of fibrino-
gen aggregates, inflammation, tissue damage, or necrosis.
UHRA-9 and -10 also displayed a lower bleeding risk com-
pared with therapeutic doses of heparin. In a more specific
approach, recombinant E. coli Ppx was shown to specifically
bind and degrade polyP. Targeting polyP with Ppx abolished
polyP procoagulant activity in human plasma and in exper-
imental thrombosis models in vivo while sparing hemosta-
sis, demonstrating that polyP is procoagulant in a FXII-
dependent manner in vivo.79

Summary and Conclusions

• NETs and polyP are physiologic polyanions with potent
procoagulant activity.

• PolyP triggers coagulation by activating FXII, while both
FXII- and TF-driven pathways contribute to NET-stimu-
lated coagulation.

• The crosstalk between NETs and polyP plays an important
role in coagulation and thrombosis.

• PolyP forms Ca2þ-rich nanoparticles independently of the
polyanion chain lengths that are retained on procoagulant
platelet surfaces in vivo.

• DNase1 digests NETs in vivo and provides a promising
strategy to therapeutically targetNETs during thrombosis.

• Cationic nucleic acid-binding molecules, recombinant
exopolyphosphatase mutants, and universal heparin re-
versal agent (UHRA) target polyP-driven thrombosis
while sparing hemostasis, indicating that polyP functions
via FXII activation in vivo.
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