Synthesis 2021; 53(10): 1833-1841
DOI: 10.1055/a-1337-4684
paper

Controllable Lewis Base Catalyzed Michael Addition of α-Amino­nitriles to Activated Alkenes: Facile Synthesis of Functionalized γ-Amino Acid Esters and γ-Lactams

Ze-Ying He
a   Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
b   Zhuhai College of Jilin University, Jilin University, Zhuhai 519041, P. R. of China
,
Ho-Chol Jang
a   Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Le-Sheng Teng
c   College of Life Sciences, Jilin University, Changchun 130012, P. R. of China
,
Zhong-Lin Wei
a   Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Wei-Wei Liao
a   Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
› Author Affiliations
National Natural Science Foundation of China (21772063).


Abstract

A novel protocol for the synthesis of functionalized γ-amino acid esters and γ-lactams through a controllable Lewis base catalyzed Michael addition of α-aminonitriles to simple activated alkenes has been developed. The scope, versatility, and efficiency of the process were demonstrated.

Supporting Information



Publication History

Received: 26 November 2020

Accepted after revision: 15 December 2020

Accepted Manuscript online:
15 December 2020

Article published online:
12 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected examples of biologically interesting natural products and analogues of γ-amino acid esters, see:
    • 1a Nicolaou KC, Yin J, Mandal D, Erande RD, Klahn P, Jin M, Aujay M, Sandoval J, Gavrilyuk J, Vourloumis D. J. Am. Chem. Soc. 2016; 138: 1698
    • 1b Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. J. Nat. Prod. 2001; 64: 907

    • For selected examples of medical agents, see:
    • 1c Gulder TA. M, Moore BS. Angew. Chem. Int. Ed. 2010; 49: 9346
    • 1d Silverman RB. Angew. Chem. Int. Ed. 2008; 47: 3500

      For selected examples of biologically interesting natural products and analogues of γ-lactams, see:
    • 2a Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 2b Winblad B. CNS Drug Rev. 2005; 11: 169
    • 2c Nett M, Gulder TA. M, Kale AJ, Hughes CC, Moore BS. J. Med. Chem. 2009; 52: 6163
    • 2d Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Richardson P, Anderson KC. Cancer Cell. 2005; 8: 407
    • 2e Yang Y.-L, Chang F.-R, Wu Y.-C. Helv. Chim. Acta 2004; 87: 1392

      For selected examples of synthesis of γ-amino acid esters, see:
    • 3a Ordóñez M, Cativiela C, Romero-Estudillo I. Tetrahedron: Asymmetry 2016; 27: 999
    • 3b Forró E, Fülöp F. Curr. Med. Chem. 2012; 19: 6178
    • 3c Hu B, Deng L. J. Org. Chem. 2019; 84: 994
    • 3d Shen L.-T, Sun L.-H, Ye S. J. Am. Chem. Soc. 2011; 133: 15894
    • 3e Gómez JE, Guo W, Gaspa S, Kleij AW. Angew. Chem. Int. Ed. 2017; 56: 15035

      For selected reviews, see:
    • 4a Albright JD. Tetrahedron 1983; 39: 3207
    • 4b Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
    • 4c Opatz T. Synthesis 2009; 1941
    • 4d Otto N, Opatz T. Chem. Eur. J. 2014; 20: 13064

      Selected examples:
    • 5a Meyer N, Werner F, Opatz T. Synthesis 2005; 945
    • 5b Meyer N, Opatz T. Synlett 2004; 787
    • 5c Meyer N, Opatz T. Synlett 2003; 1427
    • 5d Bergner I, Opatz T. Synthesis 2007; 918
  • 6 Gasparyan SP, Alexanyan MV, Arutyunyan GK, Oganesyan VE, Martirosyan VV, Paronikyan RV, Stepanyan GM, Martirosyan AO. Pharm. Chem. J. 2012; 46: 331
    • 7a Pan F, Chen J.-M, Zhuang Z, Fang Y.-Z, Sean Zhang X.-A, Liao W.-W. Org. Biomol. Chem. 2012; 10: 2114
    • 7b Chen J.-M, Fang Y.-Z, Wei Z.-L, Liao W.-W. Synthesis 2012; 44: 1849
    • 7c Pan F, Chen J.-M, Qin T.-Y, Sean Zhang X.-A, Liao W.-W. Eur. J. Org. Chem. 2012; 5324
    • 7d En D, Zou G.-F, Guo Y, Liao W.-W. J. Org. Chem. 2014; 79: 4456
    • 7e Jang H, Liu W, Sean Zhang X.-A, Liao W.-W. Chem. Res. Chin. Univ. 2016; 32: 385

      For reviews of nucleophilic phosphine catalysis, see:
    • 8a Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 8b Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
    • 8c Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 8d Guo H.-C, Fan YC, Sun Z.-H, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 8e Fan Y.-C, Kwon O. Chem. Commun. 2013; 49: 11588 

    • Reviews on organobase-catalyzed reactions:
    • 8f Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. Ishikawa T. Wiley-VCH; Weinheim: 2009
    • 8g Palomo C, Oiarbide M, López R. Chem. Soc. Rev. 2009; 38: 632
    • 9a Wang X, Fang F, Zhao C, Tian S.-K. Tetrahedron Lett. 2008; 49: 6442
    • 9b Gimbert C, Lumbierres M, Marchi C, Moreno-Mañas M, Sebastián RM, Vallribera A. Tetrahedron 2005; 61: 8598
    • 9c Stewart IC, Bergman RG, Toste FD. J. Am. Chem. Soc. 2003; 125: 8696
    • 9d Gimbert C, Moreno-Mañas M, Pérez E, Vallribera A. Tetrahedron 2007; 63: 8305
    • 9e Wang C, Qi C. Tetrahedron 2013; 69: 5348