High intensity focused ultrasound: a future alternative to surgery for the treatment of localized pancreatic tumors?

Focal destruction procedures are a promising alternative to surgery for the treatment of pancreatic tumors [1, 2]. The high intensity focused ultrasound (HIFU) device allows ultrasound beams to be concentrated at the focal point of the transducer leading to an increase in temperature and tissue necrosis without damaging interposed tissues (▶ Fig. 1). In order to target the pancreas while avoiding sound reflection on gastric air, an endoscopic ultrasound probe was developed (Vermon, Tours, France). This endoscopic approach allows the HIFU probe to be placed in contact with the posterior wall of the stomach. The probe combines an HIFU transducer and an ultrasound imaging probe. A balloon allows cooling of the transducer and the wall of the stomach.

Experiments were conducted on five anesthetized pigs (▶ Video 1). The pancreas was first located using the ultrasound imaging part of the probe. Overall, 16 transgastric HIFU sonications were performed on the tail of the pancreas. Each sonication was focused 40 mm from the probe for 45 seconds. Acoustic power was set to 64 W. Macroscopic examination of the pancreas of all pigs identified a total of seven necrotic areas with mean maximum diameter of 9.4 ± 3.5 mm. An
anatomopathological analysis confirmed the irreversible destruction of tissues in the necrotic areas (▶Fig. 2). Only one necrotic lesion was found in the sonicated gastric wall (▶Fig. 3).

To summarize, it is possible to induce areas of pancreatic necrosis using the HIFU device and endoscopic ultrasound probe, with a low complication rate. At present, this technique lacks reproducibility; however, eventually all parts of the pancreas could be accessible for treatment by HIFU ablathermy, making the endoscopic route more beneficial than extracorporeal procedures.

Funding
Société Française d’endoscopie digestive, Hospices Civils de Lyon
dx.doi.org/10.13039/501100006451

Competing interests
The authors declare that they have no conflict of interest.

The authors
Martin Fabritius1, 2, Elodie Cao2, Jade Robert2, Laurent Milot2–3, Cyril Lafon2, Mathieu Pioche1, 2
1 Department of Endoscopy and Gastroenterology, Pavillon L, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
2 Université Lyon 1, Centre Léon Bérard, INSERM, LabTAU, Lyon, France
3 Department of Radiology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France

Corresponding author
Martin Fabritius, MD
Endoscopy Unit, Digestive Disease Department, Pavillon L, Edouard Herriot Hospital, 69437 Lyon Cedex, France
martin.fabritius@chu-lyon.fr

References

Bibliography
Endoscopy
DOI 10.1055/a-1338-0293
ISSN 0013-726X
published online 2021
© 2021, Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at
https://mc.manuscriptcentral.com/e-videos