
Introduction
There is intense interest in artificial intelligence (AI) applica-
tions in gastroenterology [1–3]. Computer vision (CV) is a large
part of the early activity in this field, assisting endoscopic de-
tection or diagnosis [4]. To produce models of clinical utility,
large amounts of high-quality labelled training data are requir-
ed. This presents one of the main impediments to large-scale
adoption of AI in healthcare [5], due to the cumbersome nature
of labelling data coupled with the high cost of expert medical
personnel performing this task (economic, societal and even
environmental [6]).

A novel software platform, Cord Vision (CdV), works to ad-
dress this problem by embedding automated labelling features

and model functionality into the annotation process. The user is
first required to manually label a relatively small number of
frames in a given video sequence. These initial labels are suffi-
cient to build a micro-model that can predict the annotations
for the remaining frames, between those manually labelled.
These annotations are then reviewed by the human and can be
used to further train an even more accurate micro-model. CdV
also includes state-of-the-art object detection and classifica-
tion models to allow multiple regions of interest or abnormal-
ities to be tracked within the same sequence. Thus, human fo-
cus shifts from performing annotations to reviewing those pro-
duced by a model. The time to complete annotation of large da-
tasets should be significantly reduced. Here we assessed the
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ABSTRACT

Background and study aims The contribution of artificial

intelligence (AI) to endoscopy is rapidly expanding. Accu-

rate labelling of source data (video frames) remains the

rate-limiting step for such projects and is a painstaking,

cost-inefficient, time-consuming process. A novel software

platform, Cord Vision (CdV) allows automated annotation

based on “embedded intelligence.” The user manually la-

bels a representative proportion of frames in a section of

video (typically 5%), to create ‘micro-modelsʼ which allow

accurate propagation of the label throughout the remain-

ing video frames. This could drastically reduce the time re-

quired for annotation.

Methods We conducted a comparative study with an

open-source labelling platform (CVAT) to determine speed

and accuracy of labelling.

Results Across 5 users, CdV resulted in a significant in-

crease in labelling performance (P <0.001) compared to

CVAT for bounding box placement.

Conclusions This advance represents a valuable first step

in AI-image analysis projects.
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utility of CdV to handle the annotation of polyps in endoscopy
videos.

Methods
A study was conducted to compare CdV to the popular open-
source Computer Vision Annotation Tool (‘CVATʼ) developed
by Intel. CVAT, like CdV, allows videos to be imported and anno-
tated frame-by-frame (▶Fig. 1). Using a subsample of polyp vi-
deos from the Hyper-Kvasir dataset [7], five independent anno-
tators were asked to draw bounding boxes around polyps iden-
tified in videos from the dataset. A test set of 25,744 frames
was used. The experiment was conducted by two annotators
with good knowledge of both CdV and CVAT, and three annota-
tors with little previous experience of CdV or CVAT. Analysis of
paired labels and rate for each annotator was by Wilcoxon test
with significance assumed at P <0.05.

Labelling experiment

An arbitrary time limit of 120 minutes was set for task comple-
tion on both platforms, to label the entire dataset following the
same order of videos. The number of labelled frames comple-
ted by operators on both platforms was compared. If the data-
set was exhausted before the time limit expired, the experi-
ment was stopped.

Labellers were allowed to adopt their own labelling strate-
gies with any functionality offered in each platform. With
CVAT, this consisted of tools to draw bounding boxes and pro-
pagate them across frames using linear interpolation of box co-
ordinates. With CdV, labellers had access to both hand labelling
annotation tools and CdVʼs embedded intelligence features.
This embedded intelligence was composed of object tracking
algorithms and functionality to train and run convolutional
neural networks (CNNs) to annotate the data. The object track-
ing algorithms track the motion of human-labelled objects
through subsequent frames without requiring a prior model
for those objects. They work not by simple interpolation but
by trying to optimally match pixel and spatial information in re-
gions from frames that have labels to ones that donʼt. They can
be used in CdV starting with as little as one bounding box, but
donʼt get more effective as more labels are added.

The CNNs, on the other hand, are models that can develop
internal representations of objects by being trained with pre-
vious examples of those objects. For a maximally fair compari-
son to CVAT, the annotators started with no prior polyp models
and set to bootstrap new models purely from the labels they
themselves produced within the 120-minute time limit. While
CdV allows users to integrate their own models and weights,
all CNN training was done starting with the default training
weights and a default Faster R-CNN architecture offered on
CdV. Training parameters were also set to CdV defaults and
not altered through the course of the experiment. Once models
were trained, they would run inference on videos and render
bounding boxes around areas they detected as polyps. Models
would output a confidence score with each prediction, which
could also be used to filter bounding box rendering.

While the computation time for model training or inference
was excluded from the timing count (as it did not require any
human intervention after initiation), the time taken for the An-
notators to correct or further annotate videos after micro-mod-
el labelling in CdV was included. Total frames labelled, average
labelling speed (frames/min) and labelling kinetics (cumulative
frames labelled every 10 minutes) were compared by Wilcoxon
matched pairs sign-rank test with significance assumed at P <
0.05.

Model quality experiment

Although micro-models produced in CdV are only used for la-
belling, and not for real-world medical applications, model
quality is still important since higher-quality models save anno-
tators more time in review and correction. After running all an-
notation experiments, we thus conducted a secondary analysis
to assess the quality of micro-models trained on CdV. In partic-
ular, we were interested in how the model quality differed with
the number of labelled frames it was trained with.

Because annotators used between ~500 and ~4000 labels
when training their micro-models, the average precision of
models as a function of total labels used in training was exam-
ined at different points around that range. To compute preci-
sion of the micro-models, we compared each model-produced
bounding box with the ground-truth bounding box (if there was
one) in that same frame. Ground truth boxes were from frames
that had been reviewed by a medical professional. A prediction
is considered accurate if the area of intersection divided by the
area of union between these two boxes is over a specified

▶ Fig. 1 a Annotations in CVAT and b Cord Vision.
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threshold (this is known as intersection-over-union or IoU). We
looked at the precision averaged over IoU thresholds between
0.5 and 0.95.

Results
We note that annotators employed various strategies with
CdVʼs features. Some trained and ran a model for each video
while others annotated multiple ones using hand-labelling and
object tracking before training one model to cover the remain-
ing videos. All found significant efficiency gains over CVAT.

In the 120-minute project, a mean ± SD of 2241±810 frames
(< 10% of the total) were labelled with CVAT compared to
10674±5388 with CdV (P=0.01). Average labelling speeds
were 18.7/minute and 121/minute, respectively (a 6.4-fold in-
crease; P=0.04) while labelling dynamics were also faster in
CdV (P<0.001; ▶Fig. 2). The project dataset was exhausted by
three of five annotators using CdV (in a mean time of 99.1 ±
15.2 minutes), but left incomplete by all in CVAT.

With CdV, only 3.44%±2.71% of labels produced were hand
drawn by annotators. The remainder were generated through
either models or tracking algorithms. Thus, with CdV, far more
labels were produced with far less initial manual input (▶Fig. 3).
Automated labels still required manual time for review and/or
adjustment. For model generated labels, a mean of 36.8 ±12.8
minutes of the allocated annotator time was spent looking over
them frame by frame and making corrections.

The model quality experiment demonstrated that, at around
3900 labelled frames, micro-model average precision saturated
at between 61.2% to 65.2% (▶Fig. 4). At an IoU threshold of 0.8
precision falls between 64.4% to 72.7% while at a threshold of
0.5 model precision rose to 95.9% to 97.1%. This indicates mi-
cro-models were rarely labelling completely errant regions as
polyps when trained with close to 4000 frames, but that the
boxes produced from these models might still require adjust-
ment. Even adding in this additional process step, the overall
time taken for a given task using CdV is still several-fold faster
than a manual labelling platform.

With fewer labelled frames to train with, models could pro-
duce much worse quality outputs (▶Fig. 5). We can also see
this represented through how the mean and median IoU be-
tween model generated boxes and ground truth boxes changes
as a function of the number of training examples (▶Fig. 6). A
histogram of the distribution of these IoU values for an example
micro-model trained with 3972 labelled frames is also present-
ed (▶Fig. 7).

Discussion
This is the first description of software being used to annotate
video frames for endoscopy, removing the need to have each
frame labelled manually, and it showed a dramatic improve-
ment in efficiency and task completion.

There were a few key reasons that drove efficiency gains over
CVAT. Because polyp movement in videos rarely followed sim-
ple linear trajectories over long periods of time, CdVʼs object
tracking algorithm outperformed CVATʼs propagation features
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▶ Fig. 2 Labelling kinetics in CdV and CVAT showing significant dif-
ference in speed across all annotators in the two platforms.

▶ Fig. 3 Average number of labelled frames produced by annota-
tors from CVAT, manually drawn CdV labels, and automated CdV
labels.

500 1000 1500 2000
Data points (frames)

AP@IOU = 0.5 : 0.95
@50
@75

2500 3000 3500 4000

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Av
er

ag
e 

pr
ec

is
io

n 
(A

P)

▶ Fig. 4 Average precision (AP) for IOU threshold 50:95 and preci-
sion with threshold @50 and @75.
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(which use linear interpolation) where propagated boxes often
required frequent adjustment. CdVʼs object tracking algorithm,
in contrast, tended to accurately follow the polyp movement
relative to the scope through new frames.

With the model assistance, we found a much higher increase
in efficiency within CdV simply because most labels were pro-
duced by a trained model and did not require correction. The
main detriment to the model was the production of false posi-
tives, such as with labelling bubbles as polyps, that then requir-
ed manual deletion. Frames that were also very blurry could
produce poor results from the model.

We found the main benefit of the approach using CdV was
that the first set of annotations informed the next, thus lower-
ing the marginal time per label as the number of annotations
increased. With more time, we envision training even more
powerful models with the model-produced labels to assist in
auto-labelling new videos.

The Cord Vision platform offers significant efficiency in-
creases compared to CVAT for annotation of polyps. By decreas-
ing the amount of time a gastroenterologist needs to annotate
data for an AI model, the hope is that both more labels are pro-
duced to train superior models and that time is freed up for

more productive activities. Although we tested for polyp
bounding box annotation speed, AI models now are going be-
yond just detection of polyps. Future work can be done with
similar studies comparing more complex labelling structures
and classifications.
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Appendix
Identification of subsamples of videos from the Hyper-Kvasir
dataset:
1. 0220d11b-ab12–4b02–93ce-5d7c205c7043
2. cb9da601–6ee5–44f4-ab41-a420e69f1895
3. c472275e-c791–4911-aeb2–065c4b1940b3
4. 54c32c85–21a8–4917–93e2-dfcbf4fa6cbe
5. 7821b294-f676–4bea-92c3-fd91486b18f0
6. 5fbcae8c-17d7–46c6–9cfa-e05a73586a2d
7. 7cfdbb45-a132–4a04–8e6e-72270e3c7792
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