Synlett 2021; 32(07): 679-684
DOI: 10.1055/a-1345-3491
letter

Porphyrin-Catalyzed Oxidation of N-Substituted Tetrahydroisoquinolines to Dihydroisoquinolones

Ao Li
a   College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. of China
,
Bin Pan
b   College of Pharmacy, Third Military Medical University, Chongqing 400038, P. R. of China
,
Chao Mu
a   College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. of China
,
Na Wang
b   College of Pharmacy, Third Military Medical University, Chongqing 400038, P. R. of China
,
Yu-Long Li
a   College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. of China
,
Qin Ouyang
b   College of Pharmacy, Third Military Medical University, Chongqing 400038, P. R. of China
› Author Affiliations
The National Key R&D program of China (2018YFA0507900), the Chongqing Young Top Talents Training Plan, Chongqing Postdoctoral Innovation Project Funding (cstc2019jcyj-bsh0019), and Sichuan Provincial Human Resource and Social Security Department.


Abstract

A visible-light-induced direct α-oxygenation of N-substituted 1,2,3,4-tetrahydroisoquinoline derivatives has been successfully developed. Tetraphenylporphyrinatozinc(II) has been identified as an effective and inexpensive photocatalyst for this transformation with a wide range of substrates. This protocol provides a convenient route to the desired products in moderate to good yields at room temperature under air.

Supporting Information



Publication History

Received: 03 December 2020

Accepted after revision: 04 January 2021

Accepted Manuscript online:
04 January 2021

Article published online:
18 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Schumacher RF, Rosário AR, Souza AC. G, Menezes PH, Zeni G. Org. Lett. 2010; 12: 1952
    • 1b Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
    • 1c Kang Y.-B, Gade LH. J. Am. Chem. Soc. 2011; 133: 3658
    • 1d Wang Q, Dong X, Xiao T, Zhou L. Org. Lett. 2013; 15: 4846
    • 2a Jin R, Patureau FW. ChemCatChem 2015; 7: 223
    • 2b Dugal M, Sankar G, Raja R, Thomas JM. Angew. Chem. Int. Ed. 2000; 39: 2310
    • 2c Sawatari N, Yokota T, Sakaguchi S, Ishii Y. J. Org. Chem. 2001; 66: 7889
    • 2d Yuan Y, Ji H, Chen Y, Han Y, Song X.-F, She Y.-B, Zhong R.-G. Org. Process Res. Dev. 2004; 8: 418
    • 2e Hu R.-M, Lai Y.-H, Xu D.-Z. Synlett 2020; 31: 1753
    • 3a Fenwick O, Sprafke JK, Binas J, Kondratuk DV, Di Stasio F, Anderson HL, Cacialli F. Nano Lett. 2011; 11: 2451
    • 3b Hirai Y, Sasaki S.-i, Tamiaki H, Kashimura S, Saga Y. J. Phys. Chem. B 2011; 115: 3240
    • 4a Collman P, Chien A, Eberspacher TA, Brauman JI. J. Am. Chem. Soc. 2000; 122: 11098
    • 4b Manoj KM, Lakner FJ, Hager LP. J. Mol. Catal. B: Enzym. 2000; 9: 107
    • 4c Dunne J, Caron A, Menu P, Alayash AI, Buehler PW, Wilson MT, Silaghi-Dumitrescu R, Faivre B, Cooper CE. Biochem. J. 2006; 399: 513
    • 4d Cooper CE, Silaghi-Dumitrescu R, Rukengwa M, Alayash AI, Buehler PW. Biochim. Biophys. Acta, Proteins Proteomics 2008; 1784: 1415
    • 6a Wu Y, Zhou G, Meng Q, Tang X, Liu G, Yin H, Zhao J, Yang F, Yu Z, Luo Y. J. Org. Chem. 2018; 83: 13051
    • 6b Jiang J, Liang Z, Xiong X, Zhou X.-T, Ji H.-B. ChemCatChem 2020; 12: 3523
    • 7a Klobukowski ER, Mueller ML, Angelici RJ, Woo LK. ACS Catal. 2011; 1: 703
    • 7b Khusnutdinova JR, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2014; 136: 2998
    • 7c Jin X, Kataoka K, Yatabe T, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2016; 55: 7212
    • 7d Liu Y, Wang C, Xue D, Xiao M, Liu J, Li C, Xiao J. Chem. Eur. J. 2017; 23: 3062
    • 8a Chiarugi A, Meli E, Calvani M, Picca R, Braonti R, Camaioni E, Costantino G, Marinozzi M, Pellegrini-Giampietro DE, Pellicciari R, Moroni F. J. Pharmacol. Exp. Ther. 2003; 3: 943
    • 8b Renaud J, Bischoff SF, Buhl T, Floersheim P, Fournier B, Halleux C, Kallen H, Schlaeppi J.-M, Stark W. J. Med. Chem. 2003; 46: 2945
    • 8c Lorenc-Koci E, Sokołowska M, Kwiecień I, Włodek L. Brain Res. 2005; 1049: 133
    • 8d Sun M, Li J, Chen W, Wu H, Yang J, Wang Z. Synthesis 2020; 52: 1253
    • 9a Liu P, Zhou C.-Y, Xiang S, Che C.-M. Chem. Commun. 2010; 46: 2739
    • 9b Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
    • 9c Ratnikov MO, Xu X, Doyle MP. J. Am. Chem. Soc. 2013; 135: 9475
    • 9d Xie W, Gong B, Ning S, Liu N, Zhang Z, Che X, Zheng L.-Y, Xiang J.-B. Synlett 2019; 30: 2077
  • 10 So M.-H, Liu Y.-G, Ho C.-M, Che C.-M. Chem. Asian J. 2009; 4: 1551
    • 12a Aganda KC, Hong B, Lee A. Adv. Synth. Catal. 2018; 361: 1124
    • 12b Thatikonda T, Deepake SK, Das U. Org. Lett. 2019; 21: 2532
    • 12c Zhang Y, Schilling W, Riemer D, Das S. Nat. Protoc. 2020; 15: 822
  • 13 Borthwick JA, Ancellin N, Bertrand SM, Bingham RP, Carter PS, Chung C.-w, Churcher I, Dodic N, Fournier C, Francis PL, Hobbs A, Jamieson C, Pickett SD, Smith SE, Somers DO, Spitzfaden C, Suckling CJ, Young RG. J. Med. Chem. 2016; 59: 2452
  • 14 3,4-Dihydroisoquinolin-1(2H)-ones 2at; General Procedure The appropriate N-aryltetrahydroquinoline 1 (0.1 mM, 1 equiv), ZnTPP (0.001 mM, 1% equiv, 0.68 mg), and CsF (0.3 mM, 3 equiv, 46 mg) were added to DMF (0.1 M), and the mixture was stirred at rt and irradiated by blue LEDs under air overnight. The mixture was then extracted with CH2Cl2 and the extracts were washed with H2O. The combined organic phases were dried (Na2SO4) and concentrated under reduced pressure, and the crude product was purified by column chromatography (silica gel, PE–EtOAc). 2-Phenyl-3,4-dihydroisoquinolin-1(2H)-one (2a) White solid; yield: 15.8 mg (71%); mp 100–101 °C. 1H NMR (600 MHz, CDCl3): δ = 8.16 (d, J = 7.4 Hz, 1 H), 7.47 (t, J = 7.4 Hz, 1 H), 7.40 (dq, J = 16.8, 8.0 Hz, 5 H), 7.25 (d, J = 10.5 Hz, 2 H), 4.00 (t, J = 6.4 Hz, 2 H), 4.00 (t, 3.15 (t, J = 6.4 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 164.2, 143.1, 138.3, 132.0, 129.7, 128.9, 128.7, 127.2, 126.9, 126.2, 125.3, 49.4, 28.6. HRMS (ESI): m/z [M + Na]+ calcd for C15H13NNaO: 246.0895; found: 246.0889.